Patents by Inventor Douglas F. DeVries

Douglas F. DeVries has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11992619
    Abstract: A passive valve for use as a fixed leak valve. The valve includes a body having an internal chamber, first and second body ports in fluid communication with the chamber with the first port configured for fluid communication with a patient connection and the second body port configured for fluid communication with a ventilator, a body passageway in fluid communication with the chamber and with ambient air exterior of the body, and a check valve seal positioned to seal the body passageway to permit the flow of gas within the chamber through the body passageway to the exterior of the body and to prevent the flow of ambient air exterior of the body through the body passageway into the chamber. In alternative embodiments, the valve is incorporated into the patient connection or constructed as a separate part connectable to the patient connection.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: May 28, 2024
    Assignee: Ventec Life Systems, Inc.
    Inventors: Douglas F. DeVries, David H. Good, Shan E. Gaw, Joseph Cipollone
  • Publication number: 20230020943
    Abstract: A passive valve for use as a fixed leak valve. The valve includes a body having an internal chamber, first and second body ports in fluid communication with the chamber with the first port configured for fluid communication with a patient connection and the second body port configured for fluid communication with a ventilator, a body passageway in fluid communication with the chamber and with ambient air exterior of the body, and a check valve seal positioned to seal the body passageway to permit the flow of gas within the chamber through the body passageway to the exterior of the body and to prevent the flow of ambient air exterior of the body through the body passageway into the chamber. In alternative embodiments, the valve is incorporated into the patient connection or constructed as a separate part connectable to the patient connection.
    Type: Application
    Filed: April 4, 2022
    Publication date: January 19, 2023
    Inventors: Douglas F. DeVries, David H. Good, Shan E. Gaw, Joseph Cipollone
  • Patent number: 11291791
    Abstract: A passive valve for use as a fixed leak valve. The valve includes a body having an internal chamber, first and second body ports in fluid communication with the chamber with the first port configured for fluid communication with a patient connection and the second body port configured for fluid communication with a ventilator, a body passageway in fluid communication with the chamber and with ambient air exterior of the body, and a check valve seal positioned to seal the body passageway to permit the flow of gas within the chamber through the body passageway to the exterior of the body and to prevent the flow of ambient air exterior of the body through the body passageway into the chamber. In alternative embodiments, the valve is incorporated into the patient connection or constructed as a separate part connectable to the patient connection.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: April 5, 2022
    Assignee: Ventee Life Systems, Inc.
    Inventors: Douglas F. DeVries, David M. Good, Shan E. Gaw, Joseph Cipollone
  • Patent number: 11247015
    Abstract: A method of providing a breath to a human patient. The patient has a patient connection connected, by a patient circuit, to a ventilator having a first ventilator connection and a different second ventilator connection. Each of the first and second ventilator connections are in fluid communication with the patient circuit. The method includes identifying, with the ventilator, initiation of an inspiratory phase of the breath, delivering a bolus of oxygen to the first ventilator connection before or during the inspiratory phase, and delivering breathing gases comprising air to the second ventilator connection during the inspiratory phase. The ventilator isolates the bolus of oxygen delivered to the first ventilator connection from the breathing gases delivered to the second ventilator connection.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: February 15, 2022
    Assignee: Ventec Life Systems, Inc.
    Inventors: Douglas F. DeVries, David M. Good, Shan E. Gaw, Joseph Cipollone, Richard Branson
  • Publication number: 20210290889
    Abstract: A passive valve for use as a fixed leak valve. The valve includes a body having an internal chamber, first and second body ports in fluid communication with the chamber with the first port configured for fluid communication with a patient connection and the second body port configured for fluid communication with a ventilator, a body passageway in fluid communication with the chamber and with ambient air exterior of the body, and a check valve seal positioned to seal the body passageway to permit the flow of gas within the chamber through the body passageway to the exterior of the body and to prevent the flow of ambient air exterior of the body through the body passageway into the chamber. In alternative embodiments, the valve is incorporated into the patient connection or constructed as a separate part connectable to the patient connection.
    Type: Application
    Filed: May 26, 2021
    Publication date: September 23, 2021
    Inventors: Douglas F. DeVries, David M. Good, Shan E. Gaw, Joseph Cipollone
  • Patent number: 10576237
    Abstract: An active exhalation valve for use with a ventilator to control flow of patient exhaled gases. The valve includes a patient circuit connection port, a patient connection port, an exhaled gas port, a pilot pressure port, and a valve seat. The valve further has a movable poppet with inner and outer bellows members and a bellows poppet face. An activation pressure applied to the pilot pressure port extends the bellows members to move the poppet face into engagement with the valve seat and restrict flow of patient exhaled gases to the exhaled gas port, and the reduction of the activation pressure allows the bellows members to move the poppet face away from the valve seat and out of engagement with the valve seat to permit flow of patient exhaled gases to the exhaled gas port, thereby controlling the flow of patient exhaled gases from the valve.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: March 3, 2020
    Assignee: Ventec Life Systems, Inc.
    Inventors: Douglas F. DeVries, Shan E. Gaw
  • Publication number: 20190262572
    Abstract: A method of providing a breath to a human patient. The patient has a patient connection connected, by a patient circuit, to a ventilator having a first ventilator connection and a different second ventilator connection. Each of the first and second ventilator connections are in fluid communication with the patient circuit. The method includes identifying, with the ventilator, initiation of an inspiratory phase of the breath, delivering a bolus of oxygen to the first ventilator connection before or during the inspiratory phase, and delivering breathing gases comprising air to the second ventilator connection during the inspiratory phase. The ventilator isolates the bolus of oxygen delivered to the first ventilator connection from the breathing gases delivered to the second ventilator connection.
    Type: Application
    Filed: May 15, 2019
    Publication date: August 29, 2019
    Inventors: Douglas F. DeVries, David M. Good, Shan E. Gaw, Joseph Cipollone, Richard Branson
  • Patent number: 10315002
    Abstract: A method of providing a breath to a human patient. The patient has a patient connection connected, by a patient circuit, to a ventilator having a first ventilator connection and a different second ventilator connection. Each of the first and second ventilator connections are in fluid communication with the patient circuit. The method includes identifying, with the ventilator, initiation of an inspiratory phase of the breath, delivering a bolus of oxygen to the first ventilator connection before or during the inspiratory phase, and delivering breathing gases comprising air to the second ventilator connection during the inspiratory phase. The ventilator isolates the bolus of oxygen delivered to the first ventilator connection from the breathing gases delivered to the second ventilator connection.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: June 11, 2019
    Assignee: Ventec Life Systems, Inc.
    Inventors: Douglas F. DeVries, David M. Good, Shan E. Gaw, Joseph Cipollone, Richard Branson
  • Patent number: 10245406
    Abstract: A method of providing a breath to a human patient having a patient connection connected by a patient circuit to a ventilator device. The method includes delivering both a bolus of oxygen and breathing gases including air to the patient circuit. The patient circuit conducts the bolus of oxygen and the breathing gases to the patient connection. The breathing gases are delivered before an end of the inspiratory phase of the breath. The bolus may be delivered at or before a beginning of an inspiratory phase of the breath, and the delivery of the bolus may be terminated before the end of the inspiratory phase of the breath. The bolus and breathing gases are delivered to the patient circuit via different ventilator connections that isolate the bolus from the breathing gases before they enter the patient circuit.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: April 2, 2019
    Assignee: Ventec Life Systems, Inc.
    Inventors: Douglas F. DeVries, David M. Good, Shan E. Gaw, Joseph Cipollone, Richard Branson
  • Publication number: 20190054268
    Abstract: An active exhalation valve for use with a ventilator to control flow of patient exhaled gases. The valve includes a patient circuit connection port, a patient connection port, an exhaled gas port, a pilot pressure port, and a valve seat. The valve further has a movable poppet with inner and outer bellows members and a bellows poppet face. An activation pressure applied to the pilot pressure port extends the bellows members to move the poppet face into engagement with the valve seat and restrict flow of patient exhaled gases to the exhaled gas port, and the reduction of the activation pressure allows the bellows members to move the poppet face away from the valve seat and out of engagement with the valve seat to permit flow of patient exhaled gases to the exhaled gas port, thereby controlling the flow of patient exhaled gases from the valve.
    Type: Application
    Filed: October 22, 2018
    Publication date: February 21, 2019
    Inventors: Douglas F. DeVries, Shan E. Gaw
  • Patent number: 10118011
    Abstract: A portable mechanical ventilator having a Roots blower provides a desired gas flow and pressure to a patient circuit. The mechanical ventilator includes a flow meter operative to measure gas flow produced by the Roots blower and an exhalation control module configured to operate an exhalation valve connected to the patient circuit. A bias valve connected between the Roots blower and the patient circuit is specifically configured to generate a bias pressure relative to the patient circuit pressure at the exhalation control module. The bias valve attenuates pulsating gas flow produced by the Roots blower such that gas flowing to the mass flow meter exhibits a substantially constant pressure characteristic. The bias pressure facilitates closing of the exhalation valve at the start of inspiration, regulates positive end expiratory pressure during exhalation, and purges sense lines via a pressure transducer module.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: November 6, 2018
    Assignee: CareFusion 203, Inc.
    Inventors: Douglas F. DeVries, Todd W. Allum
  • Patent number: 10105509
    Abstract: An active exhalation valve for use with a ventilator to control flow of patient exhaled gases. The valve includes a patient circuit connection port, a patient connection port, an exhaled gas port, a pilot pressure port, and a valve seat. The valve further has a movable poppet with inner and outer bellows members and a bellows poppet face. An activation pressure applied to the pilot pressure port extends the bellows members to move the poppet face into engagement with the valve seat and restrict flow of patient exhaled gases to the exhaled gas port, and the reduction of the activation pressure allows the bellows members to move the poppet face away from the valve seat and out of engagement with the valve seat to permit flow of patient exhaled gases to the exhaled gas port, thereby controlling the flow of patient exhaled gases from the valve.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: October 23, 2018
    Assignee: Ventec Life Systems, Inc.
    Inventors: Douglas F. DeVries, Shan E. Gaw
  • Patent number: 10046134
    Abstract: A pressure swing adsorption oxygen generator to separate oxygen from air for use with a pressure source generating a high pressure and a low pressure. The pressure swing adsorption oxygen generator includes an adsorption bed having a bed of nitrogen absorbent material; and a multi-position rotary valve for controlling pressure swing adsorption of the adsorption bed, and being couplable to the pressure source for fluid communication therewith and in fluid communication with the adsorption bed. The rotary valve includes a cam having first and second rotary positions, in the first rotary position of the cam the rotary valve communicating high pressure generated by the pressure source to the adsorption bed and in the second rotary position of the cam the rotary valve communicating low pressure generated by the pressure source to the adsorption bed.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: August 14, 2018
    Assignee: Ventec Life Systems, Inc.
    Inventors: Douglas F. DeVries, Brian Marquardt
  • Patent number: 9956371
    Abstract: A ventilator with an integrated cough assist for use with a patient circuit in fluid communication with a patient connection of a patient, and operable in a ventilation mode and in a cough-assist mode. The ventilator includes a user input for switching operation from ventilation mode to cough-assist mode without disconnecting the ventilator from the patient, and a controller operable in response to the user input and controlling operation of the ventilator in cough-assist mode to provide for at least one cough assist to the patient having an insufflation phase followed by an exsufflation phase. A cough-assist valve in a first state for the insufflation phase communicates a positive pressure to the ventilator connection and in a second state for the exsufflation phase communicates a negative pressure to the ventilator connection.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: May 1, 2018
    Assignee: Ventec Life Systems, Inc.
    Inventors: Douglas F. DeVries, David M. Good
  • Publication number: 20160279363
    Abstract: A method of providing a breath to a human patient. The patient has a patient connection connected, by a patient circuit, to a ventilator having a first ventilator connection and a different second ventilator connection. Each of the first and second ventilator connections are in fluid communication with the patient circuit. The method includes identifying, with the ventilator, initiation of an inspiratory phase of the breath, delivering a bolus of oxygen to the first ventilator connection before or during the inspiratory phase, and delivering breathing gases comprising air to the second ventilator connection during the inspiratory phase. The ventilator isolates the bolus of oxygen delivered to the first ventilator connection from the breathing gases delivered to the second ventilator connection.
    Type: Application
    Filed: March 24, 2015
    Publication date: September 29, 2016
    Inventors: Douglas F. DeVries, David M. Good, Shan E. Gaw, Joseph Cipollone, Richard Branson
  • Publication number: 20160279375
    Abstract: A ventilator with an integrated cough assist for use with a patient circuit in fluid communication with a patient connection of a patient, and operable in a ventilation mode and in a cough-assist mode. The ventilator includes a user input for switching operation from ventilation mode to cough-assist mode without disconnecting the ventilator from the patient, and a controller operable in response to the user input and controlling operation of the ventilator in cough-assist mode to provide for at least one cough assist to the patient having an insufflation phase followed by an exsufflation phase. A cough-assist valve in a first state for the insufflation phase communicates a positive pressure to the ventilator connection and in a second state for the exsufflation phase communicates a negative pressure to the ventilator connection.
    Type: Application
    Filed: June 24, 2015
    Publication date: September 29, 2016
    Inventors: Douglas F. DeVries, David M. Good
  • Publication number: 20160279362
    Abstract: A method of providing a breath to a human patient having a patient connection connected by a patient circuit to a ventilator device. The method includes delivering both a bolus of oxygen and breathing gases including air to the patient circuit. The patient circuit conducts the bolus of oxygen and the breathing gases to the patient connection. The breathing gases are delivered before an end of the inspiratory phase of the breath. The bolus may be delivered at or before a beginning of an inspiratory phase of the breath, and the delivery of the bolus may be terminated before the end of the inspiratory phase of the breath. The bolus and breathing gases are delivered to the patient circuit via different ventilator connections that isolate the bolus from the breathing gases before they enter the patient circuit.
    Type: Application
    Filed: March 24, 2015
    Publication date: September 29, 2016
    Inventors: Douglas F. DeVries, David M. Good, Shan E. Gaw, Joseph Cipollone, Richard Branson
  • Publication number: 20160279372
    Abstract: A pressure swing adsorption oxygen generator to separate oxygen from air for use with a pressure source generating a high pressure and a low pressure. The pressure swing adsorption oxygen generator includes an adsorption bed having a bed of nitrogen absorbent material; and a multi-position rotary valve for controlling pressure swing adsorption of the adsorption bed, and being couplable to the pressure source for fluid communication therewith and in fluid communication with the adsorption bed. The rotary valve includes a cam having first and second rotary positions, in the first rotary position of the cam the rotary valve communicating high pressure generated by the pressure source to the adsorption bed and in the second rotary position of the cam the rotary valve communicating low pressure generated by the pressure source to the adsorption bed.
    Type: Application
    Filed: April 24, 2015
    Publication date: September 29, 2016
    Inventors: Douglas F. DeVries, Brian Marquardt
  • Publication number: 20160279377
    Abstract: An active exhalation valve for use with a ventilator to control flow of patient exhaled gases. The valve includes a patient circuit connection port, a patient connection port, an exhaled gas port, a pilot pressure port, and a valve seat. The valve further has a movable poppet with inner and outer bellows members and a bellows poppet face. An activation pressure applied to the pilot pressure port extends the bellows members to move the poppet face into engagement with the valve seat and restrict flow of patient exhaled gases to the exhaled gas port, and the reduction of the activation pressure allows the bellows members to move the poppet face away from the valve seat and out of engagement with the valve seat to permit flow of patient exhaled gases to the exhaled gas port, thereby controlling the flow of patient exhaled gases from the valve.
    Type: Application
    Filed: November 12, 2015
    Publication date: September 29, 2016
    Inventors: Douglas F. DeVries, Shan E. Gaw
  • Publication number: 20150374950
    Abstract: A portable mechanical ventilator having a Roots blower is configured to provide a desired gas flow and pressure to a patient circuit. The mechanical ventilator includes a flow meter operative to measure gas flow produced by the Roots blower and an exhalation control module configured to operate an exhalation valve connected to the patient circuit. A bias valve connected between the Roots blower and the patient circuit is specifically configured to generate a bias pressure relative to the patient circuit pressure at the exhalation control module. The bias valve is further configured to attenuate pulsating gas flow produced by the Roots blower such that gas flowing to the mass flow meter exhibits a substantially constant pressure characteristic. The bias pressure facilitates closing of the exhalation valve at the start of' inspiration, regulates positive end expiratory pressure during exhalation, and purges sense lines via a pressure transducer module.
    Type: Application
    Filed: September 4, 2015
    Publication date: December 31, 2015
    Inventors: Douglas F. DEVRIES, Todd W. ALLUM