Patents by Inventor Douglas Grotjahn

Douglas Grotjahn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9708236
    Abstract: The invention provides novel catalysts and methods of using catalysts for controlling the position of a double bond and cis/trans-selectivity in isomerization of terminal alkenes to their 2-isomers. Catalysts such as (pentamethylcyclopentadienyl)Ru formulas 1 and 3 having a bifunctional phosphine can be used in the methods. A catalyst loading of 1 mol % of formulas 1+3 can be employed for the production of (E)-2-alkenes at 40-70° C.; lower temperatures can be used with higher catalyst loading. Acetonitrile-free catalysts can be used at lower loadings, room temperature, and in less than a day to accomplish the same results as catalysts 1+3. The novel catalyst systems minimize thermodynamic equilibration of alkene isomers, so that the trans-2-alkenes of both non-functionalized and functionalized alkenes can be generated.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: July 18, 2017
    Assignee: San Diego State University Research Foundation
    Inventors: Douglas Grotjahn, Casey Larsen, Gulin Erdogan, Erik Paulson
  • Publication number: 20150231621
    Abstract: The invention provides novel catalysts and methods of using catalysts for controlling the position of a double bond and cis/trans-selectivity in isomerization of terminal alkenes to their 2-isomers. Catalysts such as (pentamethylcyclopentadienyl)Ru formulas 1 and 3 having a bifunctional phosphine can be used in the methods. A catalyst loading of 1 mol % of formulas 1+3 can be employed for the production of (E)-2-alkenes at 40-70° C.; lower temperatures can be used with higher catalyst loading. Acetonitrile-free catalysts can be used at lower loadings, room temperature, and in less than a day to accomplish the same results as catalysts 1+3. The novel catalyst systems minimize thermodynamic equilibration of alkene isomers, so that the trans-2-alkenes of both non-functionalized and functionalized alkenes can be generated.
    Type: Application
    Filed: January 9, 2015
    Publication date: August 20, 2015
    Inventors: Douglas GROTJAHN, Casey LARSON, Gulin ERDOGAN, Erik PAULSON
  • Patent number: 8501032
    Abstract: The invention provides ruthenium-comprising catalysts, and methods of making and using them, for conjugating double bonds in polyunsaturated hydrocarbons, including polyunsaturated fatty acid derivatives, such as natural fats and oils which comprise (contain) more than one carbon to carbon double bond—where the double bonds are separated by, e.g., a methylene, ethylene or propylene or longer group. The invention provides compositions and methods for treating fats and oils comprising “interrupted” (e.g., “methylene-, ethylene- or propylene-interrupted”) double bonds to generate isomers with “conjugated” double bonds. The invention also provides compositions, and methods of making and using them, for making catalysts on a solid support. In one aspect, these catalysts are for alkene isomerization or exchange of alkene hydrogens for other isotopes.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: August 6, 2013
    Assignee: San Diego State University (SDSU) Foundation
    Inventor: Douglas Grotjahn
  • Publication number: 20100228031
    Abstract: The invention provides ruthenium-comprising catalysts, and methods of making and using them, for conjugating double bonds in polyunsaturated hydrocarbons, including polyunsaturated fatty acid derivatives, such as natural fats and oils which comprise (contain) more than one carbon to carbon double bond—where the double bonds are separated by, e.g., a methylene, ethylene or propylene or longer group. The invention provides compositions and methods for treating fats and oils comprising “interrupted” (e.g., “methylene-, ethylene- or propylene-interrupted”) double bonds to generate isomers with “conjugated” double bonds. The invention also provides compositions, and methods of making and using them, for making catalysts on a solid support. In one aspect, these catalysts are for alkene isomerization or exchange of alkene hydrogens for other isotopes.
    Type: Application
    Filed: July 25, 2008
    Publication date: September 9, 2010
    Applicant: SAN DIEGO STATE UNIVERSITY (SDSU) FOUNDATION
    Inventor: Douglas Grotjahn
  • Patent number: 7777029
    Abstract: The present invention relates to a method for preparing a bifunctional chelator for lanthanide. The method comprises the steps of providing a starting material which has an amino and carboxyl group; protecting the amino with an amino protecting group and the carboxyl with a carboxyl protecting group to produce a protected compound; reacting the protected compound with cyclen to generate a monoalkylated cyclen; reacting the monoalkylated cyclone with an activated compound to generated tetra-alkylated cyclone; removing the amino protecting group with a first protecting group removal reagent; and removing the carboxyl protecting groups with a second protecting group removal reagent to yield a bifunctional chelator having three more carboxyl groups and one or more amino groups.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: August 17, 2010
    Assignee: San Diego State University (SDSU) Foundation
    Inventors: Douglas Grotjahn, Erik Wiener
  • Publication number: 20090143585
    Abstract: The current invention provides novel bifunctional catalysts. The bifunctional catalysts are prepared from phosphine ligands and a cyclopentadienyl metal complex and are useful for forming isomers of hydrocarbon species. The hydrocarbon can be an alkenol having the alkene and alcohol groups far apart and the catalyst will move the double bond across numerous carbon atoms. The hydrocarbon can also be an achiral alkenol and the catalyst will form a chiral alcohol therefrom. Moreover, deuterated water may be added to the isomerization reaction mixture for forming deuterated hydrocarbon species.
    Type: Application
    Filed: September 21, 2006
    Publication date: June 4, 2009
    Inventor: Douglas Grotjahn
  • Publication number: 20080107606
    Abstract: The present invention relates to a method for preparing a bifunctional chelator for lanthanide. The method comprises the steps of providing a starting material which has an amino and carboxyl group; protecting the amino with an amino protecting group and the carboxyl with a carboxyl protecting group to produce a protected compound; reacting the protected compound with cyclen to generate a monoalkylated cyclen; reacting the monoalkylated cyclone with an activated compound to generated tetra-alkylated cyclone; removing the amino protecting group with a first protecting group removal reagent; and removing the carboxyl protecting groups with a second protecting group removal reagent to yield a bifunctional chelator having three more carboxyl groups and one or more amino groups.
    Type: Application
    Filed: May 2, 2007
    Publication date: May 8, 2008
    Inventors: Douglas GROTJAHN, Eric Weiner
  • Publication number: 20070029528
    Abstract: Compositions and methods useful in facilitating or conducting a reaction at effective conditions, such as room temperature (e.g. about 70 degrees F.), utilize a compound including at least two different heteroatoms, and optionally a heterocycle, and a transition metal. The compound is effective in facilitating a variety of reactions including hydrolysis reactions, alcoholysis reactions, aminolysis reactions, carbon dioxide conversion reactions, hydroamination reactions, hydration reactions, and the like.
    Type: Application
    Filed: April 2, 2004
    Publication date: February 8, 2007
    Applicant: San Diego State University Foundation
    Inventors: Douglas Grotjahn, Daniel Lev