Patents by Inventor Douglas Howard

Douglas Howard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11964895
    Abstract: A method of forming a glass sheet comprises: (a) forming a ribbon of glass from molten glass with a pair of forming rollers; (b) reducing horizontal temperature variability of the ribbon of glass to be 10° C. or less across 80 percent of an entire width of the ribbon of glass before the ribbon of glass cools to a glass transition temperature; (c) controlling a cooling rate of the ribbon of glass while the ribbon of glass moves vertically downward within a setting zone such that the ribbon of glass has a first average cooling rate before the ribbon of glass cools to the glass transition temperature and a second average cooling rate after the ribbon of glass cools to the glass transition temperature, the first average cooling rate being less than the second average cooling rate; and (d) separating a glass sheet from the ribbon of glass.
    Type: Grant
    Filed: March 9, 2023
    Date of Patent: April 23, 2024
    Assignee: Corning Incorporated
    Inventors: Douglas Dale Bressler, David Alan Deneka, Michael Charles Gerrish, Douglas Hull Jennings, Miki Eugene Kunitake, William Edward Lock, Shyam Prasad Mudiraj, Neil Eugene Partridge, Jeremy Nathan Payne, Eugene Roland Proulx, II, Ryan Christopher Sutton, Steven Howard Tarcza
  • Patent number: 11873111
    Abstract: Embodiments are directed to a fuel cell protection system comprising an aircraft fuselage having an inner surface and an outer surface, an attachment point mounted on the outer surface, an aircraft fuel cell spaced apart from the inner surface, and a plate positioned between the inner surface and the aircraft fuel system, the plate spaced apart from the inner surface to create a void space. The attachment point may be a cargo hook. The void space is configured to receive all or a portion of the cargo hook after a crash. The plate creating the void space may be a rigid material or may be a ballistic fabric material.
    Type: Grant
    Filed: January 7, 2021
    Date of Patent: January 16, 2024
    Assignee: Textron Innovations Inc.
    Inventors: Timothy Brian Carr, Douglas Howard Hamelwright, Joshua Andrew Emrich
  • Patent number: 11776372
    Abstract: A data value and condition sensing and threat detecting network comprising a plurality of wireless sensor devices and their optional related wireless sub-sensor devices, for communication with their wireless detector units in a network arrangement, to allow transmission of data there between in optimized paths, such wireless detector units to communicate to and from the secure monitoring unit, located either local or remote, that manages the data value and condition sensing process, utilizing the sensors and sub-sensors to obtain values, conditions, geographic co-ordinates and rate-of-change data, to compare with thresholds, and enable alerts, as and when required.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: October 3, 2023
    Inventor: Douglas Howard Lundy
  • Patent number: 11581918
    Abstract: A near field communication system can include a near field generator configured to generate a near field detectable information signal. The near field generator and supporting circuitry also produces incidental electromagnetic radiation. A masking signal transmitter is used with the near field generator and radiates a masking electromagnetic signal. The masking electromagnetic signal may substantially mask the incidental electromagnetic radiation.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: February 14, 2023
    Assignee: Freelinc Technologies Inc.
    Inventors: Douglas Howard Dobyns, Howard Bernard Dobyns, Jed Erich Woodard, Anthony Joseph Sutera
  • Publication number: 20230020738
    Abstract: A system and method for wireless communication of proximity based marketing is provided. The method includes determining whether a proximity device and a mobile computing device are within a first proximity to each other, wherein the proximity device is associated with at least one of a product and a service, and communicating information indicating that the proximity device and the mobile computing device are within the first proximity to each other, when it is determined that the proximity device and the mobile computing device are within the first proximity to each other.
    Type: Application
    Filed: November 17, 2021
    Publication date: January 19, 2023
    Inventor: Douglas Howard Dobyns
  • Publication number: 20230011086
    Abstract: Systems and methods for communication between near field communication devices within a target communication region using near field magnetic induction is disclosed. One method comprises generating a near field detectable signal at an active node having a power level sufficient to enable communication with a plurality of near field communication nodes located within the target communication region. Information is modulated onto the near field detectable signal using at least one of the near field communication nodes. The modulated information is detected at the active node. The information is then relayed on the near field detectable signal from the active node to at least one of the plurality of near field communication nodes within the target communication region.
    Type: Application
    Filed: January 21, 2022
    Publication date: January 12, 2023
    Inventor: Douglas Howard Dobyns
  • Publication number: 20220329287
    Abstract: Technology is described for proximity based communications. A proximity boundary can be defined with dimensions defined by a communication range of one of a first Short Range Communication (SRC) device and a second SRC device. The first SRC device and the second SRC device can be configured to communicate using near field magnetic induction (NFMI). A proximity signal can be communicated in the proximity boundary between the first SRC device and the second SRC device. A security permission can be provided to enable selected data to be communicated from one or more of the first SRC device or the second SRC device in the proximity boundary when the proximity signal is detected between the first SRC device and the second SRC device. The selected data can be communicated from one or more of the first SRC device or the second SRC device using a radio frequency (RF) communication standard.
    Type: Application
    Filed: December 3, 2021
    Publication date: October 13, 2022
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20220329969
    Abstract: A system and method for proximity based social networking is disclosed between mobile computing devices each having a short range communication (SRC) device using near field magnetic induction. The SRC devices can include at least two antennas to provide magnetic induction diversity. The method comprises defining a proximity boundary with dimensions defined by a communication range of the SRC devices. A proximity signal is communicated in the proximity boundary between the SRC devices. Information can be exchanged between the mobile computing devices based on the settings of a social networking filter module.
    Type: Application
    Filed: November 15, 2021
    Publication date: October 13, 2022
    Inventor: Douglas Howard DOBYNS
  • Publication number: 20220212550
    Abstract: Embodiments are directed to a fuel cell protection system comprising an aircraft fuselage having an inner surface and an outer surface, an attachment point mounted on the outer surface, an aircraft fuel cell spaced apart from the inner surface, and a plate positioned between the inner surface and the aircraft fuel system, the plate spaced apart from the inner surface to create a void space. The attachment point may be a cargo hook. The void space is configured to receive all or a portion of the cargo hook after a crash. The plate creating the void space may be a rigid material or may be a ballistic fabric material.
    Type: Application
    Filed: January 7, 2021
    Publication date: July 7, 2022
    Applicant: Bell Textron Inc.
    Inventors: Timothy Brian Carr, Douglas Howard Hamelwright, Joshua Andrew Emrich
  • Publication number: 20220086596
    Abstract: A system and method for communication of proximity based content is disclosed between a mobile computing device having a Short Range Communication (SRC) device and a Proximity Short Range Communication (PSRC) device associated with a location or object using near field magnetic induction. The SRC device and/or the PSRC device can include at least two antennas to provide magnetic induction diversity. The method comprises defining a proximity boundary with dimensions defined by a magnetic induction diversity communication range of at least one of the SRC and PSRC devices. A proximity signal is communicated in the proximity boundary between the SRC device and the PSRC device. At least one action is performed by the mobile computing device or the PSRC device when the proximity signal is detected between the SRC device and the PSRC device.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 17, 2022
    Inventor: Douglas Howard Dobyns
  • Publication number: 20210344378
    Abstract: A system for near field communications is provided. The system can include a near field generator configured to generate a near field detectable signal comprising information. The system can include a near field detector configured to receive the near field detectable signal and output the information. The system can include an Electro-Magnetic (EM) shield surrounding the near field generator to block EM radio frequency (RF) signals in the vicinity of the near field generator from interfering with operations of the near field generator. The EM shield does not prevent communication of the near field detectable signal between the near field generator and the near field detector. The EM shield can be configured to reduce magnetic field loss from eddy currents in the EM shield as the near field detectable signal passes through the EM shield.
    Type: Application
    Filed: January 26, 2021
    Publication date: November 4, 2021
    Inventor: Douglas Howard Dobyns
  • Publication number: 20210281990
    Abstract: Various embodiments of an invention for pairing a plurality of wireless devices using wireless communications is disclosed. A method for pairing a plurality of devices comprises attenuating a pairing signal emitted from a wireless device within a pairing enclosure during a pairing procedure. A power level of the pairing signal that is emitted through the pairing enclosure is received at a pairing signal receiver. The pairing procedure is permitted to continue when the power level of the pairing signal is less than a predetermined power level.
    Type: Application
    Filed: March 5, 2021
    Publication date: September 9, 2021
    Inventor: Douglas Howard Dobyns
  • Publication number: 20210211157
    Abstract: Systems and methods for communication between near field communication devices within a target communication region using near field magnetic induction is disclosed. One method comprises generating a near field detectable signal at an active node having a power level sufficient to enable communication with a plurality of near field communication nodes located within the target communication region. Information is modulated onto the near field detectable signal using at least one of the near field communication nodes. The modulated information is detected at the active node. The information is then relayed on the near field detectable signal from the active node to at least one of the plurality of near field communication nodes within the target communication region.
    Type: Application
    Filed: December 28, 2020
    Publication date: July 8, 2021
    Inventor: Douglas Howard Dobyns
  • Publication number: 20210176591
    Abstract: A system and method for wireless communication of proximity based marketing is provided. The method includes determining whether a proximity device and a mobile computing device are within a first proximity to each other, wherein the proximity device is associated with at least one of a product and a service, and communicating information indicating that the proximity device and the mobile computing device are within the first proximity to each other, when it is determined that the proximity device and the mobile computing device are within the first proximity to each other.
    Type: Application
    Filed: November 23, 2020
    Publication date: June 10, 2021
    Inventor: Douglas Howard Dobyns
  • Publication number: 20210143868
    Abstract: A method for close proximity communication is disclosed. The method comprises detecting a signal transmitted by a close proximity communication (CPC) device at one of a distance of greater than or less than a CPC detection perimeter with a multi-mode magnetic induction communication (MMMIC) device with at least one antenna. The method further comprises identifying the type of device transmitting the detected signal. The method further comprises enabling the MMMIC device to communicate with the close proximity communication device at one of the distance of greater than the CPC detection perimeter and the distance of less than the CPC detection perimeter based on the type of device that is identified.
    Type: Application
    Filed: October 21, 2020
    Publication date: May 13, 2021
    Inventor: Douglas Howard DOBYNS
  • Publication number: 20210111759
    Abstract: Technology is described for proximity based communications. A proximity boundary can be defined with dimensions defined, in part, by a communication range of one of a first Short Range Communication (SRC) device and a second SRC device. A security permission can be provided to enable selected data to be communicated from one or more of the first SRC device or the second SRC device. The selected data can be communicated from one or more of the first SRC device or the second SRC device using a radio frequency (RF) communication standard. An RF link can be established between the first SRC device and the second SRC device to enable selected data communications to continue between the first SRC device and the second SRC device even after one or more of the first SRC device or the second SRC device exits the proximity boundary.
    Type: Application
    Filed: September 29, 2020
    Publication date: April 15, 2021
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20210051439
    Abstract: A system and method for proximity based social networking is disclosed between mobile computing devices each having a short range communication (SRC) device using near field magnetic induction. The SRC devices can include at least two antennas to provide magnetic induction diversity. The method comprises defining a proximity boundary with dimensions defined by a communication range of the SRC devices. A proximity signal is communicated in the proximity boundary between the SRC devices. Information can be exchanged between the mobile computing devices based on the settings of a social networking filter module.
    Type: Application
    Filed: August 12, 2020
    Publication date: February 18, 2021
    Inventor: Douglas Howard DOBYNS
  • Publication number: 20210044328
    Abstract: Technology is described for proximity based communications. A proximity boundary can be defined with dimensions defined by a communication range of one of a first Short Range Communication (SRC) device and a second SRC device. The first SRC device and the second SRC device can be configured to communicate using near field magnetic induction (NFMI). A proximity signal can be communicated in the proximity boundary between the first SRC device and the second SRC device. A security permission can be provided to enable selected data to be communicated from one or more of the first SRC device or the second SRC device in the proximity boundary when the proximity signal is detected between the first SRC device and the second SRC device. The selected data can be communicated from one or more of the first SRC device or the second SRC device using a radio frequency (RF) communication standard.
    Type: Application
    Filed: July 20, 2020
    Publication date: February 11, 2021
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20210044330
    Abstract: Technology is described for proximity based communications. A proximity boundary can be defined with dimensions defined, in part, by a communication range of one of a first Short Range Communication (SRC) device and a second SRC device. The first SRC device and the second SRC device can be configured to communicate using near field magnetic induction (NFMI). A proximity signal can be communicated in the proximity boundary between the first SRC device and the second SRC device, wherein at least one of the first and second SRC devices includes at least two antennas to provide magnetic induction diversity. A security permission can be provided to enable selected data to be communicated from one or more of the first SRC device and the second SRC device using NFMI when the proximity signal is detected between the first SRC device and the second SRC device.
    Type: Application
    Filed: August 5, 2020
    Publication date: February 11, 2021
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams
  • Publication number: 20210044326
    Abstract: Technology for a spatially aware wireless network is disclosed. One embodiment comprises a plurality of near field magnetic induction nodes. One or more nodes is configured to communicate a polarized spatial position signal using near field magnetic induction (NFMI) to determine one or more of a position and an orientation of one or more nodes in the spatially aware wireless network. A detection module is operable to configure the spatially aware wireless network based one or more of a position and an orientation of one or more nodes in the plurality of nodes.
    Type: Application
    Filed: July 6, 2020
    Publication date: February 11, 2021
    Inventors: Douglas Howard Dobyns, Michael Scott Abrams