Patents by Inventor Douglas J Dellinger

Douglas J Dellinger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11884915
    Abstract: Provided herein are compositions and methods for inducing CRISPR/Cas-based editing of a target nucleic acid (e.g., target DNA or target RNA) in vitro or in a cell, using modified prime editing guide RNAs (pegRNAs) that incorporate one or more chemically-modified nucleotides. The modified pegRNAs disclosed herein may be used to induce Cas-mediated incorporation of one or more nucleotide changes and/or targeted mutagenesis of a target nucleic acid. The nucleotide change can include, e.g., one or more nucleotide changes, an insertion of one or more nucleotides, or a deletion of one or more nucleotides.
    Type: Grant
    Filed: September 12, 2022
    Date of Patent: January 30, 2024
    Assignee: Agilent Technologies, Inc.
    Inventors: Daniel E. Ryan, Robert Kaiser, Douglas J. Dellinger
  • Publication number: 20230416733
    Abstract: The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
    Type: Application
    Filed: June 9, 2023
    Publication date: December 28, 2023
    Inventors: Daniel E. RYAN, Douglas J. DELLINGER, Jeffrey R. SAMPSON, Robert KAISER, Joel MYERSON
  • Patent number: 11851652
    Abstract: Provided herein are methods for inducing CRISPR/Cas-based gene regulation (e.g., genome editing or gene expression) of a target nucleic acid (e.g., target DNA or target RNA) in a cell. The methods include using modified single guide RNAs (sgRNAs) that enhance gene regulation of the target nucleic acid in a primary cell for use in ex vivo therapy or in a cell in a subject for use in in vivo therapy. Additionally, provided herein are methods for preventing or treating a genetic disease in a subject by administering a sufficient amount of a modified sgRNA to correct a mutation in a target gene associated with the genetic disease.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: December 26, 2023
    Assignees: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR, UNIVERSITY and AGILENT TECHNOLOGIES, INC.
    Inventors: Matthew H. Porteus, Ayal Hendel, Joe Clark, Rasmus O. Bak, Daniel E. Ryan, Douglas J. Dellinger, Robert Kaiser, Joel Myerson
  • Publication number: 20230340468
    Abstract: Provided herein are compositions and methods for inducing CRISPR/Cas-based editing of a target nucleic acid (e.g., target DNA or target RNA), or modulating the express of a target nucleic acid, in vitro or in a cell, using modified guide RNAs (gRNAs) that incorporate one or more chemically-modified nucleotides. In some aspects, these modified gRNAs provide superior performance under challenging conditions.
    Type: Application
    Filed: September 14, 2022
    Publication date: October 26, 2023
    Inventors: Daniel E. Ryan, Douglas J. Dellinger, Robert Kaiser
  • Publication number: 20230322742
    Abstract: Compounds and methods for purifying oligonucleotides such as RNA and DNA. A target oligonucleotide is reacted with an orthoester linker comprising an affinity tag to form an orthoester oligonucleotide-orthoester linker conjugate which is subjected to a purification technique to separate the target oligonucleotide from impurities such as truncated oligonucleotides. The orthoester linker can be then removed under mild conditions to generate the target oligonucleotide in high purity.
    Type: Application
    Filed: October 21, 2022
    Publication date: October 12, 2023
    Inventors: Douglas J. DELLINGER, Joel MYERSON, Brian SMART
  • Publication number: 20230122968
    Abstract: Compounds and methods for purifying oligonucleotides such as RNA and DNA. A target oligonucleotide is reacted with an orthoester linker comprising an affinity tag to form an orthoester oligonucleotide-orthoester linker conjugate which is subjected to a purification technique to separate the target oligonucleotide from impurities such as truncated oligonucleotides. The orthoester linker can he then removed under mild conditions to generate the target oligonucleotide in high purity.
    Type: Application
    Filed: November 14, 2022
    Publication date: April 20, 2023
    Inventors: Douglas J. DELLINGER, Joel MYERSON, Brian SMART
  • Publication number: 20230092393
    Abstract: Provided herein are compositions and methods for inducing CRISPR/Cas-based editing of a target nucleic acid (e.g., target DNA or target RNA) in vitro or in a cell, using modified prime editing guide RNAs (pegRNAs) that incorporate one or more chemically-modified nucleotides. The modified pegRNAs disclosed herein may be used to induce Cas-mediated incorporation of one or more nucleotide changes and/or targeted mutagenesis of a target nucleic acid. The nucleotide change can include, e.g., one or more nucleotide changes, an insertion of one or more nucleotides, or a deletion of one or more nucleotides.
    Type: Application
    Filed: September 12, 2022
    Publication date: March 23, 2023
    Inventors: Daniel E. Ryan, Robert Kaiser, Douglas J. Dellinger
  • Patent number: 11584773
    Abstract: Aspects of the present disclosure include compositions that make use of phosphorus and/or nucleobase protecting groups which find use in the synthesis of long polynucleotides. Phosphorus protecting groups are provided that help increase the stepwise coupling yield and/or phosphorous protecting groups that can be removed during the oxidation step. Amidine nucleobase protecting groups are provided that find use in the subject compositions and methods which provides for e.g., increased resistance to depurination during polynucleotide synthesis. In some instances, the methods and compositions disclosed herein utilize a combination of the phosphorus and amidine nucleobase protecting groups in the synthesis of polynucleotides having a sequence of 200 or more monomeric units in length. Also provided are methods for synthesizing a polynucleotide (e.g., a DNA) using one or more compounds disclosed herein.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: February 21, 2023
    Assignee: Agilent Technologies, Inc.
    Inventors: Douglas J. Dellinger, Luca Monfregola, Marvin Caruthers, Mithun Roy
  • Patent number: 11548876
    Abstract: Compounds and methods for purifying oligonucleotides such as RNA and DNA. A target oligonucleotide is reacted with an orthoester linker comprising an affinity tag to form an orthoester oligonucleotide-orthoester linker conjugate which is subjected to a purification technique to separate the target oligonucleotide from impurities such as truncated oligonucleotides. The orthoester linker can be then removed under mild conditions to generate the target oligonucleotide in high purity.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: January 10, 2023
    Assignee: Agilent Technologies, Inc.
    Inventors: Douglas J. Dellinger, Joel Myerson, Brian Smart
  • Patent number: 11535846
    Abstract: Provided herein are methods for inducing CRISPR/Cas-based gene regulation (e.g., genome editing or gene expression) of a target nucleic acid (e.g., target DNA or target RNA) in a cell. The methods include using modified single guide RNAs (sgRNAs) that enhance gene regulation of the target nucleic acid in a primary cell for use in ex vivo therapy or in a cell in a subject for use in in vivo therapy. Additionally, provided herein are methods for preventing or treating a genetic disease in a subject by administering a sufficient amount of a modified sgRNA to correct a mutation in a target gene associated with the genetic disease.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: December 27, 2022
    Assignees: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, AGILENT TECHNOLOGIES, INC.
    Inventors: Matthew H. Porteus, Ayal Hendel, Joe Clark, Rasmus O. Bak, Daniel E. Ryan, Douglas J. Dellinger, Robert Kaiser, Joel Myerson
  • Publication number: 20220275019
    Abstract: Compounds useful for forming nucleic acids having the structure of Formula I: Each of R1 or R2 is independently selected from hydrogen, a protecting group, or a phosphoramidite group. R3 is selected from H, F, O—C1-6 alkyl, O-MOE and a removable hydroxyl-protecting group. Q is a heterocyclic base. R4 is a cyclic hydrocarbon. Also disclosed are processes for forming the nucleic acids from the compounds and the nucleic acid products produced.
    Type: Application
    Filed: February 26, 2022
    Publication date: September 1, 2022
    Inventors: Benjamin D. Lunstad, Douglas J. Dellinger, Robert Kaiser
  • Publication number: 20220195426
    Abstract: Provided herein are methods for inducing CRISPR/Cas-based gene regulation (e.g., genome editing or gene expression) of a target nucleic acid (e.g., target DNA or target RNA) in a cell. The methods include using modified single guide RNAs (sgRNAs) that enhance gene regulation of the target nucleic acid in a primary cell for use in ex vivo therapy or in a cell in a subject for use in in vivo therapy. Additionally, provided herein are methods for preventing or treating a genetic disease in a subject by administering a sufficient amount of a modified sgRNA to correct a mutation in a target gene associated with the genetic disease.
    Type: Application
    Filed: March 14, 2022
    Publication date: June 23, 2022
    Applicants: The Board of Trustees of the Leland Stanford Junior Univerisity, Agilent Technologies, Inc.
    Inventors: Matthew H. Porteus, Ayal Hendel, Joe Clark, Rasmus O. Bak, Daniel E. Ryan, Douglas J. Dellinger, Robert Kaiser, Joel Myerson
  • Publication number: 20220195427
    Abstract: Provided herein are methods for inducing CRISPR/Cas-based gene regulation (e.g., genome editing or gene expression) of a target nucleic acid (e.g., target DNA or target RNA) in a cell. The methods include using modified single guide RNAs (sgRNAs) that enhance gene regulation of the target nucleic acid in a primary cell for use in ex vivo therapy or in a cell in a subject for use in in vivo therapy. Additionally, provided herein are methods for preventing or treating a genetic disease in a subject by administering a sufficient amount of a modified sgRNA to correct a mutation in a target gene associated with the genetic disease.
    Type: Application
    Filed: March 14, 2022
    Publication date: June 23, 2022
    Applicants: The Board of Trustees of the Leland Stanford Junior University, Agilent Technologies, Inc.
    Inventors: Matthew H. Porteus, Ayal Hendel, Joe Clark, Rasmus O. Bak, Daniel E. Ryan, Douglas J. Dellinger, Robert Kaiser, Joel Myerson
  • Publication number: 20220195425
    Abstract: Provided herein are methods for inducing CRISPR/Cas-based gene regulation (e.g., genome editing or gene expression) of a target nucleic acid (e.g., target DNA or target RNA) in a cell. The methods include using modified single guide RNAs (sgRNAs) that enhance gene regulation of the target nucleic acid in a primary cell for use in ex vivo therapy or in a cell in a subject for use in in vivo therapy. Additionally, provided herein are methods for preventing or treating a genetic disease in a subject by administering a sufficient amount of a modified sgRNA to correct a mutation in a target gene associated with the genetic disease.
    Type: Application
    Filed: March 14, 2022
    Publication date: June 23, 2022
    Applicants: The Board of Trustees of the Leland Stanford Junior University, Agilent Technologies, Inc.
    Inventors: Matthew H. Porteus, Ayal Hendel, Joe Clark, Rasmus O. Bak, Daniel E. Ryan, Douglas J. Dellinger, Robert Kaiser, Joel Myerson
  • Patent number: 11306309
    Abstract: Provided herein are methods for inducing CRISPR/Cas-based gene regulation (e.g., genome editing or gene expression) of a target nucleic acid (e.g., target DNA or target RNA) in a cell. The methods include using modified single guide RNAs (sgRNAs) that enhance gene regulation of the target nucleic acid in a primary cell for use in ex vivo therapy or in a cell in a subject for use in in vivo therapy. Additionally, provided herein are methods for preventing or treating a genetic disease in a subject by administering a sufficient amount of a modified sgRNA to correct a mutation in a target gene associated with the genetic disease.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: April 19, 2022
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Agilent Technologies
    Inventors: Matthew H. Porteus, Ayal Hendel, Joe Clark, Rasmus O. Bak, Daniel E. Ryan, Douglas J. Dellinger, Robert Kaiser, Joel Myerson
  • Patent number: 11299483
    Abstract: Compounds and methods for purifying oligonucleotides such as RNA and DNA. A target oligonucleotide is reacted with an orthoester linker comprising an affinity tag to form an orthoester oligonucleotide-orthoester linker conjugate which is subjected to a purification technique to separate the target oligonucleotide from impurities such as truncated oligonucleotides. The orthoester linker can be then removed under mild conditions to generate the target oligonucleotide in high purity.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: April 12, 2022
    Assignee: Agilent Technologies, Inc.
    Inventors: Douglas J. Dellinger, Joel Myerson, Brian Smart
  • Publication number: 20220002334
    Abstract: Aspects of the present disclosure include compositions that make use of phosphorus and/or nucleobase protecting groups which find use in the synthesis of long polynucleotides. Phosphorus protecting groups are provided that help increase the stepwise coupling yield and/or phosphorous protecting groups that can be removed during the oxidation step. Amidine nucleobase protecting groups are provided that find use in the subject compositions and methods which provides for e.g., increased resistance to depurination during polynucleotide synthesis. In some instances, the methods and compositions disclosed herein utilize a combination of the phosphorus and amidine nucleobase protecting groups in the synthesis of polynucleotides having a sequence of 200 or more monomeric units in length. Also provided are methods for synthesizing a polynucleotide (e.g., a DNA) using one or more compounds disclosed herein.
    Type: Application
    Filed: July 19, 2021
    Publication date: January 6, 2022
    Inventors: Douglas J. Dellinger, Luca Monfregola, Marvin Caruthers, Mithun Roy
  • Patent number: 11104699
    Abstract: Aspects of the present disclosure include compositions that make use of phosphorus and/or nucleobase protecting groups which find use in the synthesis of long polynucleotides. Phosphorus protecting groups are provided that help increase the stepwise coupling yield and/or phosphorous protecting groups that can be removed during the oxidation step. Amidine nucleobase protecting groups are provided that find use in the subject compositions and methods which provides for e.g., increased resistance to depurination during polynucleotide synthesis. In some instances, the methods and compositions disclosed herein utilize a combination of the phosphorus and amidine nucleobase protecting groups in the synthesis of polynucleotides having a sequence of 200 or more monomeric units in length. Also provided are methods for synthesizing a polynucleotide (e.g., a DNA) using one or more compounds disclosed herein.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: August 31, 2021
    Assignees: Agilent Technologies, Inc., University of Colorado Boulder
    Inventors: Douglas J. Dellinger, Luca Monfregola, Marvin Caruthers, Mithun Roy
  • Publication number: 20210079389
    Abstract: The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
    Type: Application
    Filed: November 24, 2020
    Publication date: March 18, 2021
    Inventors: Daniel E. RYAN, Douglas J. DELLINGER, Jeffrey R. SAMPSON, Robert KAISER, Joel MYERSON
  • Patent number: 10900034
    Abstract: The present invention relates to modified guide RNAs and their use in clustered, regularly interspaced, short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: January 26, 2021
    Assignee: AGILENT TECHNOLOGIES, INC.
    Inventors: Daniel E. Ryan, Douglas J. Dellinger, Jeffrey R. Sampson, Robert Kaiser, Joel Myerson