Patents by Inventor Douglas J. K. Weaver

Douglas J. K. Weaver has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8574660
    Abstract: Processes are described herein for preparing medical devices and other articles having a low-fouling surface on a substrate comprising a polymeric surface. The polymeric surface material may possess a range of polymeric backbones and substituents while providing the articles with a highly efficient, biocompatible, and non-fouling surface. The processes involve treating the substrate to reduce the concentration of chemical species on the surface of or in the substrate without altering the bulk physical properties of the device or article, and thereafter forming a grafted polymer layer on the treated substrate surface.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: November 5, 2013
    Assignee: Semprus Biosciences Corporation
    Inventors: Douglas J. K. Weaver, Jun Li, Zheng Zhang, Abby N. Deleault, Eric W. Marchese, Phu C. Nguyen, Chad C. Huval, Michael A. Bouchard, Arthur J. Coury, Christopher R. Loose
  • Publication number: 20110305909
    Abstract: Processes are described herein for preparing medical devices and other articles having a low-fouling surface on a substrate comprising a polymeric surface. The polymeric surface material may possess a range of polymeric backbones and substituents while providing the articles with a highly efficient, biocompatible, and non-fouling surface. The processes involve treating the substrate to reduce the concentration of chemical species on the surface of or in the substrate without altering the bulk physical properties of the device or article, and thereafter forming a grafted polymer layer on the treated substrate surface.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 15, 2011
    Inventors: Douglas J.K. Weaver, Jun Li, Zheng Zhang, Abby N. Deleault, Eric W. Marchese, Phu C. Nguyen, Chad C. Huval, Michael A. Bouchard, Arthur J. Coury, Christopher R. Loose
  • Patent number: 6387977
    Abstract: An impoved barrier or drug delivery system which is highly adherent to the surface to which it is applied is disclosed, along with methods for making the barrier. In the preferred embodiment, tissue is stained with a photoinitiator, then the polymer solution or gel having added thereto a defined amount of the same or a different photoinitiator is applied to the tissue. On exposure to light, the resulting system polymerizes at the surface, giving excellent adherence, and also forms a gel in the rest of the applied volume. Thus a gel barrier of arbitrary thickness can be applied to a surface while maintaining high adherence at the interface. This process is referred to herein as “priming”. The polymerizable barrier materials are highly useful for sealing tissue surfaces and junctions against leaks of fluids. In another embodiment, “priming” can be used to reliably adhere preformed barriers to tissue or other surfaces, or to adhere tissue surfaces to each other.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: May 14, 2002
    Assignees: Focal, Inc., Board of Regents, The University of Texas System
    Inventors: Amarpreet S. Sawhney, David A. Melanson, Chandrashekar P. Pathak, Jeffrey A. Hubbell, Luis Z. Avila, Mark T. Kieras, Stephen D. Goodrich, Shikha P. Barman, Arthur J. Coury, Ronald S. Rudowsky, Douglas J. K. Weaver, Marc A. Levine, John C. Spiridigliozzi, Thomas S. Bromander, Dean M. Pichon, George Selecman, David J. Nedder, Bradley C. Poff, Donald L. Elbert
  • Patent number: 6121341
    Abstract: An impoved barrier or drug delivery system which is highly adherent to the surface to which it is applied is disclosed, along with methods for making the barrier. In the preferred embodiment, tissue is stained with a photoinitiator, then the polymer solution or gel having added thereto a defined amount of the same or a different photoinitiator is applied to the tissue. On exposure to light, the resulting system polymerizes at the surface, giving excellent adherence, and also forms a gel in the rest of the applied volume. Thus a gel barrier of arbitrary thickness can be applied to a surface while maintaining high adherence at the interface. This process is referred to herein as "priming". the polymerizable barrier materials are highly useful for sealing tissue surfaces and junctions against leaks of fluids. In another embodiment, "priming" can be used to reliably adhere preformed barriers to tissue or other surfaces, or to adhere tissue surfaces to each other.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: September 19, 2000
    Assignees: Board of Regents, The University of Texas System, Focal, Inc.
    Inventors: Amarpreet S. Sawhney, David A. Melanson, Chandrashekar P. Pathak, Jeffrey A. Hubbell, Luis Z. Avila, Mark T. Kieras, Stephen D. Goodrich, Shikha P. Barman, Arthur J. Coury, Ronald S. Rudowsky, Douglas J. K. Weaver, Marc A. Levine, John C. Spiridigliozzi, Thomas S. Bromander, Dean M. Pichon, George Selecman, David J. Nedder, Bradley C. Poff, Donald L. Elbert
  • Patent number: 5844016
    Abstract: An improved barrier or drug delivery system which is highly adherent to the surface to which it is applied is disclosed, along with methods for making the barrier. The barrier can be prepared by staining tissue with a photoinitiator, applying a solution containing a polymerizable barrier material solution and a photoinitiator to the tissue, and polymerizing the polymer solution on exposure to light. The resulting polymer adheres strongly to the tissue surface, and also forms a gel in the rest of the applied volume. The polymerizable barrier materials are highly useful for sealing tissue surfaces and junctions against leaks of fluids. The method can be used to adhere preformed barriers to tissue or other surfaces, or to adhere tissue surfaces to each other. Tissue surfaces can be adhered to each other to repair wounds. In addition to photochemical initiators, non-photochemical initiators and combinations of chemical initiators and photochemical initiators can be used.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 1, 1998
    Assignees: Focal, Inc., The Board of Regents--University of Texas System
    Inventors: Amarpreet S. Sawhney, David A. Melanson, Chandrashekar P. Pathak, Jeffrey A. Hubbell, Luis Z. Avila, Mark T. Kieras, Stephen D. Goodrich, Shikha P. Barman, Arthur J. Coury, Ronald S. Rudowsky, Douglas J. K. Weaver