Patents by Inventor Douglas J. Malone

Douglas J. Malone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230393610
    Abstract: A two-chip die module with minimal chip-to-chip clock skew is provided. The two-chip die module includes a common substrate, first and second chips operably disposed on the common substrate to be communicative in parallel with one another and a single phase lock loop (PLL). The PLL is disposed within one of the first and second chips to provide a source for a common clock signal for the first and second chips. PLL signals of the PLL to the first and second chips are nearly equal and clock sample signals of the first and second chips are nearly equal.
    Type: Application
    Filed: August 24, 2023
    Publication date: December 7, 2023
    Inventors: Douglas J. Malone, Andreas H. A. Arp, Franklin M. Baez, Daniel M. Dreps, Jason Lee Frankel, Chad Andrew Marquart, Ching Lung Tong, Lily Jielu Zhang
  • Patent number: 11775004
    Abstract: A two-chip die module with minimal chip-to-chip clock skew is provided. The two-chip die module includes a common substrate, first and second chips operably disposed on the common substrate to be communicative in parallel with one another and a single phase lock loop (PLL). The PLL is disposed within one of the first and second chips to provide a source for a common clock signal for the first and second chips. PLL signals of the PLL to the first and second chips are nearly equal and clock sample signals of the first and second chips are nearly equal.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: October 3, 2023
    Assignee: International Business Machines Corporation
    Inventors: Douglas J. Malone, Andreas H. A. Arp, Franklin M. Baez, Daniel M. Dreps, Jason Lee Frankel, Chad Andrew Marquart, Ching Lung Tong, Lily Jielu Zhang
  • Publication number: 20230085155
    Abstract: A two-chip die module with minimal chip-to-chip clock skew is provided. The two-chip die module includes a common substrate, first and second chips operably disposed on the common substrate to be communicative in parallel with one another and a single phase lock loop (PLL). The PLL is disposed within one of the first and second chips to provide a source for a common clock signal for the first and second chips. PLL signals of the PLL to the first and second chips are nearly equal and clock sample signals of the first and second chips are nearly equal.
    Type: Application
    Filed: September 10, 2021
    Publication date: March 16, 2023
    Inventors: Douglas J. Malone, Andreas H. A. Arp, Franklin M. Baez, Daniel M. Dreps, Jason Lee Frankel, Chad Andrew Marquart, Ching Lung Tong, Lily Jielu Zhang
  • Patent number: 11275113
    Abstract: Measuring a control system response time of a second clock tree is provided, comprising measuring a skew between the second clock signal and the first clock signal and storing the skew, initiating a delay change of a delay induced by the programmable delay line and starting a time measurement. At least one iteration is performed of measuring the skew between the second clock signal and the first clock signal and comparing the measured skew with the stored skew. Based on the result of the comparison, stopping after a current iteration and stopping the time measurement. A result of the time measurement is the control system response time.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: March 15, 2022
    Assignee: International Business Machines Corporation
    Inventors: Andreas H. A. Arp, Douglas J. Malone, Thomas Makowski, Michael V. Koch
  • Patent number: 11181577
    Abstract: A skew sensor for detecting skew between two input signals is provided. The skew sensor includes at least two skew detectors. The first skew detector receives either a first clock signal or a second clock signal as a first input signal, and the other one of the first clock signal and the second clock signal delayed by a first delay difference induced by one or more delay elements as a second input signal. The second skew detector receives either the first clock signal or the second clock signal as the first input signal, and the other one of the first clock signal and the second clock signal optionally delayed by a second delay difference induced by one more delay elements, wherein the second delay difference is different from the first delay difference, as the second input signal. Skew is measured between the first clock signal and the second clock signal.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: November 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Andreas H. A. Arp, Douglas J. Malone, Thomas Makowski, Michael V. Koch
  • Publication number: 20210239755
    Abstract: A skew sensor for detecting skew between two input signals is provided. The skew sensor includes at least two skew detectors. The first skew detector receives either a first clock signal or a second clock signal as a first input signal, and the other one of the first clock signal and the second clock signal delayed by a first delay difference induced by one or more delay elements as a second input signal. The second skew detector receives either the first clock signal or the second clock signal as the first input signal, and the other one of the first clock signal and the second clock signal optionally delayed by a second delay difference induced by one more delay elements, wherein the second delay difference is different from the first delay difference, as the second input signal. Skew is measured between the first clock signal and the second clock signal.
    Type: Application
    Filed: January 30, 2020
    Publication date: August 5, 2021
    Inventors: Andreas H. A. Arp, Douglas J. Malone, Thomas Makowski, Michael V. Koch
  • Publication number: 20210242860
    Abstract: A method for cycle accurate deskewing a second clock signal with respect to a first clock signal is provided. The first clock signal has been propagated from a first clock source through a first clock tree. The second clock signal has been propagated from the first clock source through a second clock tree. The second clock tree comprises a programmable delay line for inducing a delay. The method comprises determining a first clock tree latency of the first clock tree, determining a second clock tree latency of the second clock tree, setting a cycle time of the first clock source to a measuring cycle time depending on the first clock tree latency and/or the second clock tree latency, adjusting a skew between the second clock signal and the first clock signal, setting the cycle time of the first clock source to an operating cycle time.
    Type: Application
    Filed: January 30, 2020
    Publication date: August 5, 2021
    Inventors: Andreas H. A. Arp, Douglas J. Malone, Thomas Makowski, Michael V. Koch
  • Publication number: 20210239756
    Abstract: Measuring a control system response time of a second clock tree is provided, comprising measuring a skew between the second clock signal and the first clock signal and storing the skew, initiating a delay change of a delay induced by the programmable delay line and starting a time measurement. At least one iteration is performed of measuring the skew between the second clock signal and the first clock signal and comparing the measured skew with the stored skew. Based on the result of the comparison, stopping after a current iteration and stopping the time measurement. A result of the time measurement is the control system response time.
    Type: Application
    Filed: January 30, 2020
    Publication date: August 5, 2021
    Inventors: Andreas H. A. Arp, Douglas J. Malone, Thomas Makowski, Michael V. Koch
  • Patent number: 11082034
    Abstract: A method for cycle accurate deskewing a second clock signal with respect to a first clock signal is provided. The first clock signal has been propagated from a first clock source through a first clock tree. The second clock signal has been propagated from the first clock source through a second clock tree. The second clock tree comprises a programmable delay line for inducing a delay. The method comprises determining a first clock tree latency of the first clock tree, determining a second clock tree latency of the second clock tree, setting a cycle time of the first clock source to a measuring cycle time depending on the first clock tree latency and/or the second clock tree latency, adjusting a skew between the second clock signal and the first clock signal, setting the cycle time of the first clock source to an operating cycle time.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: August 3, 2021
    Assignee: International Business Machines Corporation
    Inventors: Andreas H. A. Arp, Douglas J. Malone, Thomas Makowski, Michael V. Koch
  • Patent number: 11043946
    Abstract: A method for adjusting a skew between a second clock signal and a first clock signal is provided. The second clock signal has been propagated from a first clock source through a second clock tree. The second clock tree comprises a programmable delay line that induces a delay. The method comprises at least one iteration of: measuring a skew between the second clock signal and the first clock signal, comparing an absolute difference of the measured skew and a sum of delay changes initiated in a time window preceding the measurement with a target skew, and initiating a delay change of the delay induced by the programmable delay line in the second clock tree depending on a result of the comparison.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: June 22, 2021
    Assignee: International Business Machines Corporation
    Inventors: Andreas H. A. Arp, Douglas J. Malone, Thomas Makowski, Michael V. Koch
  • Patent number: 7076710
    Abstract: Method and system for testing a memory array having a non-uniform binary address space. The test system includes a test engine for generating addresses for the memory array and for generating and applying data patterns to the memory array. The test engine has an address generator including a series combination of a linear register and a binary counter for generating the non-uniform address.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: July 11, 2006
    Assignee: International Business Machines Corporation
    Inventors: Thomas J. Knips, Tom Y. Chang, James W. Dawson, Douglas J. Malone
  • Patent number: 7073105
    Abstract: An array built-in, on-chip self test system for testing a memory array and a method of testing the memory array. The memory array has data input ports, data output ports, and address ports, and a data control subsystem, an address control subsystem, and a comparator. The data control subsystem generates and applies deterministic data patterns to the data input ports of the memory array. The address control subsystem generates addresses for application to the memory array in coordination with said data control subsystem, and includes a sequence counter, a count rate controller for the sequence controller, a count rate controller divider to control the number of cycles per address, an address controller to provide granular control of addresses, and an X-OR gate receiving an input from a sequence counter and from the address controller, the X-OR gate outputting an address bit to the memory array.
    Type: Grant
    Filed: April 14, 2003
    Date of Patent: July 4, 2006
    Assignee: International Business Machines Corporation
    Inventors: Thomas J. Knips, James W. Dawson, John D. Davis, Douglas J. Malone
  • Publication number: 20040205405
    Abstract: An array built-in, on-chip self test system for testing a memory array and a method of testing the memory array. The memory array has data input ports, data output ports, and address ports, and a data control subsystem, an address control subsystem, and a comparator. The data control subsystem generates and applies deterministic data patterns to the data input ports of the memory array. The address control subsystem generates addresses for application to the memory array in coordination with said data control subsystem, and includes a sequence counter, a count rate controller for the sequence controller, a count rate controller divider to control the number of cycles per address, an address controller to provide granular control of addresses, and an X-OR gate receiving an input from a sequence counter and from the address controller, the X-OR gate outputting an address bit to the memory array.
    Type: Application
    Filed: April 14, 2003
    Publication date: October 14, 2004
    Applicant: International Business Machines Corporation
    Inventors: Thomas J. Knips, James W. Dawson, John D. Davis, Douglas J. Malone
  • Publication number: 20040205435
    Abstract: Method and system for testing a memory array having a non-uniform binary address space. The test system includes a test engine for generating addresses for the memory array and for generating and applying data patterns to the memory array. The test engine has an address generator including a series combination of a linear register and a binary counter for generating the non-uniform address.
    Type: Application
    Filed: April 14, 2003
    Publication date: October 14, 2004
    Applicant: International Business Machines Corporation
    Inventors: Thomas J. Knips, Tom Y. Chang, James W. Dawson, Douglas J. Malone
  • Patent number: 6631006
    Abstract: A marking assembly for marking feature locations of a material and an automated processing system that uses input from the marking assembly to process the material. Feature locations such as defect positions and the size of the material are measured with an optical measuring device. The optical measuring device sends and receives light along a light path that is substantially parallel to a processing dimension of the material. A user manually interrupts the light path at a feature location, sending light from the feature location to the optical measuring device. The optical measuring device measures the feature location from the light received from the feature location and sends the feature location to a processor. The processor automatically positions the material relative to a modifying device, based on the feature location.
    Type: Grant
    Filed: May 17, 2001
    Date of Patent: October 7, 2003
    Assignee: Precision Automation, Inc.
    Inventors: Spencer B. Dick, Douglas J. Malone, Jan Lankamp, Jr., David Lee, David A. Morgan
  • Patent number: 6549438
    Abstract: An AC-to-DC converter furnishing a regulated DC-output voltage from an AC-input supply voltage which is converted with a rectifier that utilizes, in at least two of its legs, IGBT (insulated gate bipolar transistor) devices, preferably of the kind that have no internal diodes. Also included in the converter of this convention is circuitry which tracks zero-crossing events relative to AC-input voltage for the purpose of establishing switching signals and times for such signals for operating the IGBT devices, and wherein thorough-safe operation is associated with malfunctioning of the zero-crossing tracking subcircuitry whereby a failure in that circuitry will result effectively in a shut down of the entire converter, and a bleed down to zero of DC-output voltage.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: April 15, 2003
    Assignee: Precision Automation, Inc.
    Inventor: Douglas J. Malone
  • Publication number: 20020171849
    Abstract: A marking assembly for marking feature locations of a material and an automated processing system that uses input from the marking assembly to process the material. Feature locations such as defect positions and the size of the material are measured with an optical measuring device. The optical measuring device sends and receives light along a light path that is substantially parallel to a processing dimension of the material. A user manually interrupts the light path at a feature location, sending light from the feature location to the optical measuring device. The optical measuring device measures the feature location from the light received from the feature location and sends the feature location to a processor. The processor automatically positions the material relative to a modifying device, based on the feature location.
    Type: Application
    Filed: May 17, 2001
    Publication date: November 21, 2002
    Inventors: Spencer B. Dick, Douglas J. Malone, Jan Lankamp, David Lee, David A. Morgan
  • Publication number: 20020159279
    Abstract: An AC-to-DC converter furnishing a regulated DC-output voltage from an AC-input supply voltage which is converted with a rectifier that utilizes, in at least two of its legs, IGBT (insulated gate bipolar transistor) devices, preferably of the kind that have no internal diodes. Also included in the converter of this convention is circuitry which tracks zero-crossing events relative to AC-input voltage for the purpose of establishing switching signals and times for such signals for operating the IGBT devices, and wherein thorough-safe operation is associated with malfunctioning of the zero-crossing tracking subcircuitry whereby a failure in that circuitry will result effectively in a shut down of the entire converter, and a bleed down to zero of DC-output voltage.
    Type: Application
    Filed: April 30, 2001
    Publication date: October 31, 2002
    Applicant: Precision Automation, Inc.
    Inventor: Douglas J. Malone
  • Patent number: 4237374
    Abstract: A cutting cylinder of a newspaper press assembly has a magnet member mounted thereon. A semiconductor Hall effect pickoff is mounted in proximity to the cutting cylinder such that the magnet passes by this sensor in close proximity thereto once during each rotation of the cylinder. The output of the Hall effect sensor, which is in the form of pulses, is fed both to a non-inverting and an inverting amplifier. The outputs of the amplifiers are fed to a differential detector which provides an output only in accordance with the difference between the inputs fed thereto, thus eliminating common-mode inputs such as noise signals. The output of the differential detector is fed to a digital counter which provides a count of the input pulses representing the number of newspapers or the like detected by the sensor. The output of the digital counter in turn is fed to a readout device which provides a suitable readout of this count which may be in the form of a display.
    Type: Grant
    Filed: April 16, 1979
    Date of Patent: December 2, 1980
    Inventor: Douglas J. Malone