Patents by Inventor Douglas J. Pitera

Douglas J. Pitera has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8288147
    Abstract: Methods for synthesizing isopentenyl pyrophosphate are provided. A first method comprises introducing into a host microorganism a plurality of heterologous nucleic acid sequences, each coding for a different enzyme in the mevalonate pathway for producing isopentenyl pyrophosphate. A related method comprises introducing into a host microorganism an intermediate in the mevalonate pathway and at least one heterologous nucleic acid sequence, each sequence coding for an enzyme in the mevalonate pathway necessary for converting the intermediate into isopentenyl pyrophosphate. The invention also provides nucleic acid sequences, enzymes, expression vectors, and transformed host cells for carrying out the methods.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: October 16, 2012
    Assignee: The Regents of the University of California
    Inventors: Jay D. Keasling, Vincent J.J. Martin, Douglas J. Pitera, Seon-Won Kim, Sydnor T. Withers, III, Yasuo Yoshikuni, Jack Newman, Artem Valentinovich Khlebnikov
  • Patent number: 8257957
    Abstract: The present invention provides genetically modified host cells and use of same for producing isoprenoid compounds.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: September 4, 2012
    Assignees: The Regents of the University of California, Amyris Biotechnologies, Inc.
    Inventors: Jay D. Keasling, Farnaz Nowroozi, Douglas J. Pitera, Jennifer Anthony, Jack D. Newman, Larry Anthony
  • Patent number: 8114645
    Abstract: The present invention provides methods of increasing production of an isoprenoid or an isoprenoid precursor in a host cell, the methods generally involving modulating the level of activity of a fatty acid biosynthetic pathway enzyme in the host cell and/or culturing the host cell in a culture medium comprising a fatty acid or a compound that can be metabolized in a cell or broken down in the medium to yield a fatty acid and/or culturing the host cell in a culture medium having increased osmolarity.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: February 14, 2012
    Assignee: The Regents of the University of California
    Inventors: Douglas J. Pitera, Jack D. Newman, Jeffrey Lance Kizer, Jay D. Keasling, Brian F. Pfleger
  • Patent number: 7927794
    Abstract: The present invention provides isolated, genetically modified host cells, where a host cell is genetically modified with a nucleic acid that includes a nucleotide sequence encoding a biosynthetic pathway enzyme. Synthesis of the enzyme in the host cell results in conversion of a substrate for the enzyme into a biosynthetic pathway intermediate, which intermediate is produced in an amount effective to inhibit growth of the genetically modified host cell. The present invention further provides compositions and kits comprising a subject genetically modified host cell. Subject host cells are useful for identifying a gene product having activity in a biosynthetic pathway. The present invention further provides methods of identifying a gene product having activity in a biosynthetic pathway.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: April 19, 2011
    Assignee: The Regents of the University of California
    Inventors: Jay D. Keasling, Jack D. Newman, Douglas J. Pitera, Sydnor T. Withers, III, Keith Kinkead Reiling, Vincent J. J. Martin
  • Patent number: 7915026
    Abstract: Methods for synthesizing isopentenyl pyrophosphate are provided. A first method comprises introducing into a host microorganism a plurality of heterologous nucleic acid sequences, each coding for a different enzyme in the mevalonate pathway for producing isopentenyl pyrophosphate. A related method comprises introducing into a host microorganism an intermediate in the mevalonate pathway and at least one heterologous nucleic acid sequence, each sequence coding for an enzyme in the mevalonate pathway necessary for converting the intermediate into isopentenyl pyrophosphate. The invention also provides nucleic acid sequences, enzymes, expression vectors, and transformed host cells for carrying out the methods.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: March 29, 2011
    Assignee: The Regents of the University of California
    Inventors: Jay D. Keasling, Vincent J. J. Martin, Douglas J. Pitera, Seon-Won Kim, Sydnor T. Withers, III, Yasuo Yoshikuni, Jack Newman, Artem Valentinovich Khlebnikov
  • Patent number: 7736882
    Abstract: Methods for synthesizing isopentenyl pyrophosphate are provided. A first method comprises introducing into a host microorganism a plurality of heterologous nucleic acid sequences, each coding for a different enzyme in the mevalonate pathway for producing isopentenyl pyrophosphate. A related method comprises introducing into a host microorganism an intermediate in the mevalonate pathway and at least one heterologous nucleic acid sequence, each sequence coding for an enzyme in the mevalonate pathway necessary for converting the intermediate into isopentenyl pyrophosphate. The invention also provides nucleic acid sequences, enzymes, expression vectors, and transformed host cells for carrying out the methods.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: June 15, 2010
    Assignee: The Regents of the University of California
    Inventors: Jay D. Keasling, Vincent J. J. Martin, Douglas J. Pitera, Seon-Won Kim, Sydnor T. Withers, III, Yasuo Yoshikuni, Jack Newman, Artem Valentinovich Khlebnikov
  • Publication number: 20100112672
    Abstract: The present invention provides genetically modified host cells and use of same for producing isoprenoid compounds.
    Type: Application
    Filed: September 25, 2007
    Publication date: May 6, 2010
    Inventors: Jay D. Keasling, Farnaz Nowroozi, Douglas J. Pitera, Jack D. Newman, Jennifer Anthony, Larry Anthony
  • Publication number: 20100055754
    Abstract: The present invention provides methods of increasing production of an isoprenoid or an isoprenoid precursor in a host cell, the methods generally involving modulating the level of activity of a fatty acid biosynthetic pathway enzyme in the host cell and/or culturing the host cell in a culture medium comprising a fatty acid or a compound that can be metabolized in a cell or broken down in the medium to yield a fatty acid and/or culturing the host cell in a culture medium having increased osmolarity.
    Type: Application
    Filed: May 17, 2007
    Publication date: March 4, 2010
    Inventors: Douglas J. Pitera, Jack D. Newman, Jeffrey Lance Kizer, Jay D. Keasling, Brian F. Pfleger
  • Patent number: 7670825
    Abstract: The present invention provides methods of producing an isoprenoid or an isoprenoid precursor in a genetically modified host cell. The methods generally involve modulating the level of hydroxymethylglutaryl-CoA (HMG-CoA) in the cell, such that the level of HMG-CoA is not toxic to the cell and/or does not substantially inhibit cell growth, but is maintained at a level that provides for high-level production of mevalonate, IPP, and other downstream products of an isoprenoid or isoprenoid pathway, e.g., polyprenyl diphosphates and isoprenoid compounds. The present invention further provides genetically modified host cells that are suitable for use in a subject method. The present invention further provides recombinant nucleic acid constructs for use in generating a subject genetically modified host cell, including recombinant nucleic acid constructs comprising nucleotide sequences encoding one or more mevalonate pathway enzymes, and recombinant vectors (e.g., recombinant expression vectors) comprising same.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: March 2, 2010
    Assignee: The Regents of the University of California
    Inventors: Jay D. Keasling, Jack D. Newman, Douglas J. Pitera
  • Patent number: 7667017
    Abstract: Methods for synthesizing isopentenyl pyrophosphate are provided. A first method comprises introducing into a host microorganism a plurality of heterologous nucleic acid sequences, each coding for a different enzyme in the mevalonate pathway for producing isopentenyl pyrophosphate. A related method comprises introducing into a host microorganism an intermediate in the mevalonate pathway and at least one heterologous nucleic acid sequence, each sequence coding for an enzyme in the mevalonate pathway necessary for converting the intermediate into isopentenyl pyrophosphate. The invention also provides nucleic acid sequences, enzymes, expression vectors, and transformed host cells for carrying out the methods.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: February 23, 2010
    Assignee: The Regents of the University of California
    Inventors: Jay D. Keasling, Vincent J. J. Martin, Douglas J. Pitera, Seon-Won Kim, Sydnor T. Withers, III, Yasuo Yoshikuni, Jack D. Newman, Artem Valentinovich Khlebnikov
  • Patent number: 7622282
    Abstract: Methods for synthesizing isopentenyl pyrophosphate are provided. A first method comprises introducing into a host microorganism a plurality of heterologous nucleic acid sequences, each coding for a different enzyme in the mevalonate pathway for producing isopentenyl pyrophosphate. A related method comprises introducing into a host microorganism an intermediate in the mevalonate pathway and at least one heterologous nucleic acid sequence, each sequence coding for an enzyme in the mevalonate pathway necessary for converting the intermediate into isopentenyl pyrophosphate. The invention also provides nucleic acid sequences, enzymes, expression vectors, and transformed host cells for carrying out the methods.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: November 24, 2009
    Assignee: The Regents of the University of California
    Inventors: Jay D. Keasling, Vincent J. J. Martin, Douglas J. Pitera, Seon-Won Kim, Sydnor T. Withers, III, Yasuo Yoshikuni, Jack Newman, Artem Valentinovich Khlebnikov
  • Patent number: 7622283
    Abstract: Methods for synthesizing isopentenyl pyrophosphate are provided. A first method comprises introducing into a host microorganism a plurality of heterologous nucleic acid sequences, each coding for a different enzyme in the mevalonate pathway for producing isopentenyl pyrophosphate. A related method comprises introducing into a host microorganism an intermediate in the mevalonate pathway and at least one heterologous nucleic acid sequence, each sequence coding for an enzyme in the mevalonate pathway necessary for converting the intermediate into isopentenyl pyrophosphate. The invention also provides nucleic acid sequences, enzymes, expression vectors, and transformed host cells for carrying out the methods.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: November 24, 2009
    Assignee: The Regents of the University of California
    Inventors: Jay D. Keasling, Vinent J. J. Martin, Douglas J. Pitera, Seon-Won Kim, Sydnor T. Withers, III, Yasuo Yoshikuni, Jack Newman, Artem Valentinovich Khlebnikov
  • Publication number: 20090004724
    Abstract: The present invention provides methods of producing an isoprenoid or an isoprenoid precursor in a genetically modified host cell. The methods generally involve modulating the level of hydroxymethylglutaryl-CoA (HMG-CoA) in the cell, such that the level of HMG-CoA is not toxic to the cell and/or does not substantially inhibit cell growth, but is maintained at a level that provides for high-level production of mevalonate, IPP, and other downstream products of an isoprenoid or isoprenoid pathway, e.g., polyprenyl diphosphates and isoprenoid compounds. The present invention further provides genetically modified host cells that are suitable for use in a subject method. The present invention further provides recombinant nucleic acid constructs for use in generating a subject genetically modified host cell, including recombinant nucleic acid constructs comprising nucleotide sequences encoding one or more mevalonate pathway enzymes, and recombinant vectors (e.g., recombinant expression vectors) comprising same.
    Type: Application
    Filed: January 17, 2007
    Publication date: January 1, 2009
    Inventors: Jay D. Keasling, Jack D. Newman, Douglas J. Pitera
  • Patent number: 7183089
    Abstract: The present invention provides methods of producing an isoprenoid or an isoprenoid precursor in a genetically modified host cell. The methods generally involve modulating the level of hydroxymethylglutaryl-CoA (HMG-CoA) in the cell, such that the level of HMG-CoA is not toxic to the cell and/or does not substantially inhibit cell growth, but is maintained at a level that provides for high-level production of mevalonate, IPP, and other downstream products of an isoprenoid or isoprenoid pathway, e.g., polyprenyl diphosphates and isoprenoid compounds. The present invention further provides genetically modified host cells that are suitable for use in a subject method. The present invention further provides recombinant nucleic acid constructs for use in generating a subject genetically modified host cell, including recombinant nucleic acid constructs comprising nucleotide sequences encoding one or more mevalonate pathway enzymes, and recombinant vectors (e.g., recombinant expression vectors) comprising same.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: February 27, 2007
    Assignee: The Regents of the University of California
    Inventors: Jay D. Keasling, Jack D. Newman, Douglas J. Pitera