Patents by Inventor Douglas L Williams

Douglas L Williams has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240158398
    Abstract: Described herein are compounds that inhibit ALK2 and its mutants, pharmaceutical compositions including such compounds, and methods of using such compounds and compositions.
    Type: Application
    Filed: April 20, 2023
    Publication date: May 16, 2024
    Inventors: Natasja Brooijmans, Jason D. Brubaker, Paul E. Fleming, Brian Lewis Hodous, Joseph L. Kim, Brett D. Williams, Douglas Wilson, Kevin J. Wilson, Mark Cronin
  • Publication number: 20120219262
    Abstract: A fiber management device includes a support member including a first connector for releasably securing a first sidewall portion of an optical fiber bundle to the support member at a first fixed location and a drawer mounted for sliding movement relative to the support member, the drawer including a mounting surface, a plurality of fiber guiding components mounted on the mounting surface, and a second connector for releasably securing a second sidewall portion of the optical fiber bundle to the drawer at a second fixed location.
    Type: Application
    Filed: August 3, 2011
    Publication date: August 30, 2012
    Inventors: Walter Mark Hendrix, Douglas L. Williams, Stephen P. Watson, Charles J. Mann, Manikandan Ramachandran, Pankaj Gupta, Stephen Kumar Chandran, Gunaseelan Swaminathan
  • Patent number: 6229945
    Abstract: It has been demonstrated that B containing glasses are sensitive to radiation in the band 225-275 nm and, therefore, B2O3 glasses are particularly adapted to receive refractive index modulation, e.g., to make reflection gratings. Glasses containing SiO2 and B2O3 are particularly suitable when the grating is to be localized in the cladding of a fiber. Glasses containing SiO2, GeO2, and B2O3 are suitable when the grating is in the path region of a waveguide, e.g., in the core of a fiber.
    Type: Grant
    Filed: August 11, 1999
    Date of Patent: May 8, 2001
    Assignee: British Telecommunications public limited company
    Inventors: Benjamin J Ainslie, Douglas L Williams, Graeme D Maxwell, Raman Kashyap, Jonathan R Armitage
  • Patent number: 6178280
    Abstract: An optical device includes a waveguiding configuration and an electrical capacitive configuration. The capacitive configuration includes glass electrode region(s) and glass dielectric region(s) with electrical leads, e.g., metallic conductors, for applying electrical control signals to the electrode region(s). The preferred metals for the conductors are Ni, Ti and Au. The waveguiding structure is configured so that the fields associated with optical signals propagating therein interact with dielectric region(s). During the use of the device control signals are applied to the dielectric region(s) by the electrical leads. The control signals have the effect that temporary electric fields are applied to the dielectric region(s). The fields change the optical properties of the dielectric region(s) and this affects the propagation of the optical signals. The device can either be produced in planar or fibre configurations.
    Type: Grant
    Filed: August 12, 1998
    Date of Patent: January 23, 2001
    Assignee: British Telecommunications public limited company
    Inventors: Graeme D Maxwell, Douglas L Williams, Raymond P Smith
  • Patent number: 6097512
    Abstract: Boron containing glasses are sensitive to radiation in the band 225-275 nm and therefore, B.sub.2 O.sub.3 glasses are particularly adapted to receive refractive index modulation, e.g., to make reflection gratings. Glasses containing SiO.sub.2 and B.sub.2 O.sub.3 are particularly suitable when the grating is to be localized in the cladding of a fibre. Glasses containing SiO.sub.2, GeO.sub.2 and B.sub.2 O.sub.3 are suitable when the grating is in the path region of a waveguide, e.g., in the core of a fibre.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: August 1, 2000
    Assignee: British Telecommunications public limited company
    Inventors: Benjamin J Ainslie, Douglas L Williams, Graeme D Maxwell, Raman Kashyap, Jonathan R Armitage
  • Patent number: 6075625
    Abstract: It has been demonstrated that B containing glasses are sensitive to radiation in the band 225-275 nm and, therefore, B.sub.2 O.sub.3 glasses are particularly adapted to receive refractive index modulation, e.g., to make reflection gratings. Glasses containing SiO.sub.2 and B.sub.2 O.sub.3 are particularly suitable when the grating is to be localized in the cladding of a fiber. Glasses containing SiO.sub.2, GeO.sub.2, and B.sub.2 O.sub.3 are suitable when the grating is in the path region of a waveguide, e.g., in the core of a fiber.
    Type: Grant
    Filed: September 22, 1994
    Date of Patent: June 13, 2000
    Assignee: British Telecommunications public limited company
    Inventors: Benjamin J Ainslie, Douglas L Williams, Graeme D Maxwell, Raman Kashyap, Jonathan R Armitage
  • Patent number: D570050
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: May 27, 2008
    Inventor: Douglas L Williams