Patents by Inventor Douglas Max Gill

Douglas Max Gill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220158068
    Abstract: The subject disclosure is directed towards layered substrate structures with aligned optical access to electrical devices formed thereon for laser processing and electrical device tuning. According to an embodiment, a layered substrate structure is provided that comprises an optical substrate having a first surface and a second surface and a patterned bonding layer formed on the second surface that comprises a bonding region and an open region, wherein the open region exposes a portion of the second surface. The layered substrate structure further comprises a device chip bonded to the patterned bonding layer via the bonding region and comprising at least one electrical component aligned with the optical substrate and the open region. The at least one electrical component can include for example, a thin film wire, an air bridge, a qubit, an electrode, a capacitor or a resonator.
    Type: Application
    Filed: November 13, 2020
    Publication date: May 19, 2022
    Inventors: Stephen M. Gates, Russell A. Budd, Kevin Shawn Petrarca, Vivekananda P. Adiga, Douglas Max Gill
  • Patent number: 11289638
    Abstract: A method for improving lifetime and coherence time of a qubit in a quantum mechanical device is provided. The method includes providing a substrate having a frontside and a backside, the frontside having at least one qubit formed thereon, the at least one qubit having capacitor pads. The method further includes at least one of removing an amount of substrate material from the backside of the substrate at an area opposite the at least one qubit or depositing a superconducting metal layer at the backside of the substrate at the area opposite the at least one qubit to reduce radiofrequency electrical current loss due to at least one of silicon-air (SA) interface, metal-air (MA) interface or silicon-metal (SM) interface so as to enhance a lifetime (T1) and a coherence time (T2) in the at least one qubit.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: March 29, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Douglas Max Gill, Martin O. Sandberg, Vivekananda P. Adiga, Yves Martin, Hanhee Paik
  • Publication number: 20210399192
    Abstract: A method for improving lifetime and coherence time of a qubit in a quantum mechanical device is provided. The method includes providing a substrate having a frontside and a backside, the frontside having at least one qubit formed thereon, the at least one qubit having capacitor pads. The method further includes at least one of removing an amount of substrate material from the backside of the substrate at an area opposite the at least one qubit or depositing a superconducting metal layer at the backside of the substrate at the area opposite the at least one qubit to reduce radiofrequency electrical current loss due to at least one of silicon-air (SA) interface, metal-air (MA) interface or silicon-metal (SM) interface so as to enhance a lifetime (T1) and a coherence time (T2) in the at least one qubit.
    Type: Application
    Filed: June 22, 2020
    Publication date: December 23, 2021
    Inventors: Douglas Max Gill, Martin O. Sandberg, Vivekananda P. Adiga, Yves Martin, Hanhee Paik
  • Patent number: 10241354
    Abstract: Techniques regard electro-optic modulators are provided. For example, one or embodiments described herein can regard an apparatus that can comprise a first lateral region, a second lateral region, and a central region located on a semiconductor substrate. The first lateral region can be adjacent to a first side of the central region and can have a first conductivity type. The second lateral region can be adjacent to a second side of the central region and can have a second conductivity type. Also, the first side can be opposite to the second side. Further, the central region can comprise a diode junction adjacent to an intrinsic region. The intrinsic region can separate the first lateral region and the second lateral region.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: March 26, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Douglas Max Gill