Patents by Inventor Douglas Michael Ackermann

Douglas Michael Ackermann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160106745
    Abstract: Described herein are methods and pharmaceutical formulations for treating dry eye disease.
    Type: Application
    Filed: October 19, 2015
    Publication date: April 21, 2016
    Inventors: Douglas Michael ACKERMANN, JR., James LOUDIN, Kenneth J. MANDELL
  • Publication number: 20160106665
    Abstract: Described herein are methods and pharmaceutical formulations for improving ocular discomfort.
    Type: Application
    Filed: October 19, 2015
    Publication date: April 21, 2016
    Inventors: Douglas Michael ACKERMANN, JR., James LOUDIN, Kenneth J. MANDELL
  • Publication number: 20160106746
    Abstract: Described herein are pharmaceutical formulations for treating ocular conditions.
    Type: Application
    Filed: October 19, 2015
    Publication date: April 21, 2016
    Inventors: Douglas Michael ACKERMANN, JR., James LOUDIN, Kenneth J. MANDELL
  • Publication number: 20160106744
    Abstract: Described herein are methods and pharmaceutical formulations for increasing tear production.
    Type: Application
    Filed: October 19, 2015
    Publication date: April 21, 2016
    Inventors: Douglas Michael ACKERMANN, JR., James LOUDIN, Kenneth J. MANDELL
  • Patent number: 9265956
    Abstract: Described here are devices, systems, and methods for treating a condition in an animal. Generally the systems include a stimulator that is implantable in the animal and a controller system configured to transmit one or more signals to the implanted stimulator. The controller system may have a controller configured to generate the one or more signals. The controller system may include one or more collars, bridles, horse hoods, cages, animal beds, and/or food bowls. The systems may be used to treat one or more conditions such as dry eye, and may treat the conditions in an animal such as a horse, dog, or cat.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: February 23, 2016
    Assignee: Oculeve, Inc.
    Inventors: Douglas Michael Ackermann, James Donald Loudin
  • Patent number: 9265934
    Abstract: A percutaneously implantable paddle lead includes an elongated lead body having a proximal portion and a distal portion; a plurality of terminals disposed on the proximal portion of the lead; a flexible paddle body coupled to the distal portion of the lead; and a plurality of electrodes disposed in the paddle body and electrically coupled to the terminals on the proximal portion of the lead. The percutaneously implantable paddle lead also includes a bonding material in contact with the paddle body and holding the paddle body in a compacted form prior to, and during, insertion into a percutaneous implantation tool. The bonding material is configured and arranged to release the paddle body during or soon after implantation into a patient so that the paddle body can deploy into its paddle-like form. Alternatively, at least one current-degradable fastener can be used instead of the binding material.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: February 23, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Anne Margaret Pianca, Douglas Michael Ackermann
  • Publication number: 20150335900
    Abstract: A stimulation system stimulates anatomical targets in a patient for treatment of dry eye. The system may include a controller and a microstimulator. The controller may be implemented externally to or internally within the microstimulator. The components of the controller and microstimulator may be implemented in a single unit or in separate devices. When implemented separately, the controller and microstimulator may communicate wirelessly or via a wired connection. The microstimulator may generate pulses from a controller signal and apply the signal via one or more electrodes to an anatomical target. The microstimulator may not have any intelligence or logic to shape or modify a signal. The microstimulator may be a passive device configured to generate a pulse based on a signal received from the controller. The microstimulator may shape or modify a signal. Waveforms having different frequency, amplitude and period characteristics may stimulate different anatomical targets in a patient.
    Type: Application
    Filed: August 3, 2015
    Publication date: November 26, 2015
    Inventors: Douglas Michael ACKERMANN, Daniel PALANKER, James Donald LOUDIN, Garrett Cale SMITH, Victor Wayne MCCRAY, Brandon McNary FELKINS
  • Patent number: 9149643
    Abstract: A communications bridge device communicates between a consumer electronics device, such as a smart telephone, and an implantable medical device. The bridge forwards instructions and data between the consumer electronics device and the implantable medical device. The bridge contains a first transceiver that operates according to a communication protocol operating in the consumer electronics device (such as Bluetooth®), and second transceiver that operates according to a communications technique operating in the implantable medical device (e.g., Frequency Shift Keying). A software application is installed on the consumer electronics device, which provides a user interface for controlling and reading the implantable medical device. The software application is downloadable using standard cellular means. The bridge is preferably small, and easily and discreetly carried by the implantable medical device patient.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: October 6, 2015
    Assignee: Boston Scientific Neuromodualtion Corporation
    Inventors: Samuel Tahmasian, Daniel Aghassian, Douglas Michael Ackermann, Joonho Hyun, Dennis Ralph Zottola
  • Patent number: 9095723
    Abstract: A stimulation system stimulates anatomical targets in a patient for treatment of dry eye. The system may include a controller and a microstimulator. The controller may be implemented externally to or internally within the microstimulator. The components of the controller and microstimulator may be implemented in a single unit or in separate devices. When implemented separately, the controller and microstimulator may communicate wirelessly or via a wired connection. The microstimulator may generate pulses from a controller signal and apply the signal via one or more electrodes to an anatomical target. The microstimulator may not have any intelligence or logic to shape or modify a signal. The microstimulator may be a passive device configured to generate a pulse based on a signal received from the controller. The microstimulator may shape or modify a signal. Waveforms having different frequency, amplitude and period characteristics may stimulate different anatomical targets in a patient.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: August 4, 2015
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Douglas Michael Ackermann, Daniel Palanker, James Donald Loudin, Garrett Cale Smith, Victor Wayne McCray, Brandon McNary Felkins
  • Publication number: 20150182754
    Abstract: A communications bridge device communicates between a consumer electronics device, such as a smart telephone, and an implantable medical device. The bridge forwards instructions and data between the consumer electronics device and the implantable medical device. The bridge contains a first transceiver that operates according to a communication protocol operating in the consumer electronics device (such as Bluetooth®), and second transceiver that operates according to a communications technique operating in the implantable medical device (e.g., Frequency Shift Keying). A software application is installed on the consumer electronics device, which provides a user interface for controlling and reading the implantable medical device. The software application is downloadable using standard cellular means. The bridge is preferably small, and easily and discreetly carried by the implantable medical device patient.
    Type: Application
    Filed: March 16, 2015
    Publication date: July 2, 2015
    Inventors: Samuel Tahmasian, Daniel Aghassian, Douglas Michael Ackermann, Joonho Hyun, Dennis Ralph Zottola
  • Patent number: 9008800
    Abstract: Example ionic coupling electrodes are described. One example ionic conducting electrode includes a first portion that can be coupled to a single phase current source. The first portion carries current flow via electrons. The electrode includes a second portion to apply a current to a nerve tissue. The second portion carries current flow via ions. The second portion is positioned between the nerve tissue and the first portion to prevent the first portion from touching the nerve tissue. The current applied to the nerve tissue is produced in the second portion in response to a current that is present in the first portion. The current present in the first portion is provided from a single phase current source. The electrode may be used in applications including, but not limited to, nerve block applications and nerve stimulation applications.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: April 14, 2015
    Assignee: Case Western Reserve University
    Inventors: Douglas Michael Ackermann, Jr., Kevin Kilgore, Niloy Bhadra, Narendra Bhadra
  • Patent number: 8996137
    Abstract: Described here are devices, systems, and methods for treating one or more conditions (such as dry eye) or improving ocular health by providing stimulation to nasal or sinus tissue. Generally, the devices may be handheld or implantable. In some variations, the handheld devices may have a stimulator body and a stimulator probe having one or more nasal insertion prongs. When the devices and systems are used to treat dry eye, nasal or sinus tissue may be stimulated to increase tear production, reduce the symptoms of dry eye, and/or improve ocular surface health.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: March 31, 2015
    Assignee: Oculeve, Inc.
    Inventors: Douglas Michael Ackermann, James Donald Loudin, John Wardle, Jarren Armond Baldwin, Daniel N. Hamilton, Janusz Kuzma, Christopher William Stivers
  • Publication number: 20150088156
    Abstract: A stimulation system stimulates anatomical targets in a patient for treatment of dry eye. The system may include a controller and a microstimulator. The controller may be implemented externally to or internally within the microstimulator. The components of the controller and microstimulator may be implemented in a single unit or in separate devices. When implemented separately, the controller and microstimulator may communicate wirelessly or via a wired connection. The microstimulator may generate pulses from a controller signal and apply the signal via one or more electrodes to an anatomical target. The microstimulator may not have any intelligence or logic to shape or modify a signal. The microstimulator may be a passive device configured to generate a pulse based on a signal received from the controller. The microstimulator may shape or modify a signal. Waveforms having different frequency, amplitude and period characteristics may stimulate different anatomical targets in a patient.
    Type: Application
    Filed: December 4, 2014
    Publication date: March 26, 2015
    Inventors: Douglas Michael ACKERMANN, Daniel PALANKER, James Donald LOUDIN, Garrett Cale SMITH, Victor Wayne MCCRAY, Brandon McNary FELKINS
  • Patent number: 8983615
    Abstract: A communications bridge device communicates between a consumer electronics device, such as a smart telephone, and an implantable medical device. The bridge forwards instructions and data between the consumer electronics device and the implantable medical device. The bridge contains a first transceiver that operates according to a communication protocol operating in the consumer electronics device (such as Bluetooth®), and second transceiver that operates according to a communications technique operating in the implantable medical device (e.g., Frequency Shift Keying). A software application is installed on the consumer electronics device, which provides a user interface for controlling and reading the implantable medical device. The software application is downloadable using standard cellular means. The bridge is preferably small, and easily and discreetly carried by the implantable medical device patient.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: March 17, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Samuel Tahmasian, Daniel Ahassian, Douglas Michael Ackermann, Joonho Hyun, Dennis Ralph Zottola
  • Patent number: 8918181
    Abstract: A stimulation system stimulates anatomical targets in a patient for treatment of dry eye. The system may include a controller and a microstimulator. The controller may be implemented externally to or internally within the microstimulator. The components of the controller and microstimulator may be implemented in a single unit or in separate devices. When implemented separately, the controller and microstimulator may communicate wirelessly or via a wired connection. The microstimulator may generate pulses from a controller signal and apply the signal via one or more electrodes to an anatomical target. The microstimulator may not have any intelligence or logic to shape or modify a signal. The microstimulator may be a passive device configured to generate a pulse based on a signal received from the controller. The microstimulator may shape or modify a signal. Waveforms having different frequency, amplitude and period characteristics may stimulate different anatomical targets in a patient.
    Type: Grant
    Filed: November 16, 2011
    Date of Patent: December 23, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Douglas Michael Ackermann, Daniel Palanker, James Donald Loudin, Garrett Cale Smith, Victor Wayne McCray, Brandon McNary Felkins
  • Publication number: 20140371812
    Abstract: Described here are devices, systems, and methods for treating one or more conditions (such as dry eye) or improving ocular health by providing stimulation to nasal or sinus tissue. Generally, the devices may be handheld or implantable. In some variations, the handheld devices may have a stimulator body and a stimulator probe having one or more nasal insertion prongs. When the devices and systems are used to treat dry eye, nasal or sinus tissue may be stimulated to increase tear production, reduce the symptoms of dry eye, and/or improve ocular surface health.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 18, 2014
    Inventors: Douglas Michael ACKERMANN, James Donald LOUDIN, John WARDLE, Jarren Armond BALDWIN, Daniel N. HAMILTON, Janusz KUZMA, Christopher William STIVERS, Manfred FRANKE
  • Publication number: 20140358191
    Abstract: Example adjustable electrodes are described. One example adjustable electrode includes two or more contacts configured to selectively deliver high frequency alternating current (HFAC) to a nerve in an amount sufficient to produce an HFAC nerve conduction block in the nerve. The example adjustable electrode may also include a logic configured to selectively control which of the two or more contacts deliver HFAC to the nerve to control whether the nerve electrode is in a first (e.g., onset response mitigating) configuration or in a second (e.g., HFAC nerve conduction block maintenance) configuration. The electrode may be used in applications including, but not limited to, nerve block applications, and nerve stimulation applications. The electrode may be adjusted by changing attributes including, but not limited to, the number, length, orientation, distance between, surface area, and distance from a nerve of contacts to be used to deliver the HFAC.
    Type: Application
    Filed: August 20, 2014
    Publication date: December 4, 2014
    Inventors: Kevin KILGORE, Douglas Michael ACKERMANN, JR., Niloy BHADRA, Narendra BHADRA, Joe PAYER
  • Publication number: 20140316485
    Abstract: Described here are devices, systems, and methods for treating one or more conditions (such as dry eye) or improving ocular health by providing stimulation to nasal or sinus tissue. Generally, the devices may be handheld or implantable. In some variations, the handheld devices may have a stimulator body and a stimulator probe having one or more nasal insertion prongs. When the devices and systems are used to treat dry eye, nasal or sinus tissue may be stimulated to increase tear production, reduce the symptoms of dry eye, and/or improve ocular surface health.
    Type: Application
    Filed: April 18, 2014
    Publication date: October 23, 2014
    Applicant: Oculeve, Inc.
    Inventors: Douglas Michael ACKERMANN, James Donald LOUDIN, John WARDLE, Jarren Armond BALDWIN, Daniel N. HAMILTON, Janusz KUZMA, Christopher William STIVERS
  • Publication number: 20140316310
    Abstract: Described here are devices, systems, and methods for treating one or more conditions (such as dry eye) or improving ocular health by providing stimulation to nasal or sinus tissue. Generally, the devices may be handheld or implantable. In some variations, the handheld devices may have a stimulator body and a stimulator probe having one or more nasal insertion prongs. When the devices and systems are used to treat dry eye, nasal or sinus tissue may be stimulated to increase tear production, reduce the symptoms of dry eye, and/or improve ocular surface health.
    Type: Application
    Filed: April 18, 2014
    Publication date: October 23, 2014
    Applicant: Oculeve, Inc.
    Inventors: Douglas Michael ACKERMANN, James Donald LOUDIN
  • Patent number: 8843188
    Abstract: Example adjustable electrodes are described. One example adjustable electrode includes two or more contacts configured to selectively deliver high frequency alternating current (HFAC) to a nerve in an amount sufficient to produce an HFAC nerve conduction block in the nerve. The example adjustable electrode also includes a logic configured to selectively control which of the two or more contacts deliver HFAC to the nerve to control whether the nerve electrode is in a first (e.g., onset response mitigating) configuration or in a second (e.g., HFAC nerve conduction block maintenance) configuration. The electrode may be used in applications including, but not limited to, nerve block applications, and nerve stimulation applications. The electrode may be adjusted by changing attributes including, but not limited to, the number, length, orientation, distance between, surface area, and distance from a nerve of contacts to be used to deliver the HFAC.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: September 23, 2014
    Assignee: Case Western Reserve University
    Inventors: Kevin Kilgore, Douglas Michael Ackermann, Jr., Niloy Bhadra, Narendra Bhadra, Joe Payer