Patents by Inventor Douglas R. Savage
Douglas R. Savage has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220088278Abstract: The present invention relates generally to an endoprosthesis for maintaining patency of a body vessel, e.g., a stent, in a basically tubular configuration comprised of a structural lattice with a mesh covering which is capable of storing releasing one or more drugs to and penetrating into surrounding tissue.Type: ApplicationFiled: January 28, 2020Publication date: March 24, 2022Inventors: Ronald E. Betts, Douglas R. Savage
-
Patent number: 10456508Abstract: An improvement in drug-eluting stents, and method of their making, are disclosed. The surface of a metal stent is roughened to have a surface roughness of at least about 20 ?in (0.5 ?m) and a surface roughness range of between about 300-700 ?in (7.5-17.5 ?m). The roughened stent surface is covered with a polymer-free coating of a limus drug, to a coating thickness greater than the range of surface roughness of the roughened stent surface.Type: GrantFiled: January 13, 2017Date of Patent: October 29, 2019Assignee: Biosensors International Group, Ltd.Inventors: Douglas R. Savage, John E. Shulze, Ronald E. Betts, Sepehr Fariabi, Shih-Horng Su
-
Publication number: 20170128635Abstract: An improvement in drug-eluting stents, and method of their making, are disclosed. The surface of a metal stent is roughened to have a surface roughness of at least about 20 ?in (0.5 ?m) and a surface roughness range of between about 300-700 ?in (7.5-17.5 ?m). The roughened stent surface is covered with a polymer-free coating of a limus drug, to a coating thickness greater than the range of surface roughness of the roughened stent surface.Type: ApplicationFiled: January 13, 2017Publication date: May 11, 2017Inventors: Douglas R. Savage, John E. Shulze, Ronald E. Betts, Sepehr Fariabi, Shih-Horng Su
-
Publication number: 20170095358Abstract: The invention is related to a biodegradable stent for vascular placement comprising, a tubular biodegradable metal structure, a biodegradable organic layer covering the surfaces of the structure, and optionally a biodegradable polymer coating covering the organic surface layer. The organic layer is a derivative of a monomer vapor injected plasma and is applied in a plasma enhanced chemical vapor deposition process. Thereby the biodegradable organic layer is an organosilane layer and the biodegradable polymer coating contains a therapeutic drug.Type: ApplicationFiled: June 24, 2015Publication date: April 6, 2017Inventors: Douglas R. Savage, John Dang Nguyen
-
Patent number: 9579424Abstract: An improvement in drug-eluting stents, and method of their making, are disclosed. The surface of a metal stent is roughened to have a surface roughness of at least about 20 ?in (0.5 ?m) and a surface roughness range of between about 300-700 ?in (7.5-17.5 ?m). The roughened stent surface is covered with a polymer-free coating of a limus drug, to a coating thickness greater than the range of surface roughness of the roughened stent surface.Type: GrantFiled: July 20, 2012Date of Patent: February 28, 2017Assignee: Biosensors International Group, Ltd.Inventors: Douglas R. Savage, John E. Shulze, Ronald E. Betts, Sepehr Fariabi, Shih-Horng Su
-
Patent number: 8871292Abstract: A radially expandable, endovascular stent designed for placement at a site of vascular injury, for inhibiting restenosis at the site, a method of using, and a method of making the stent. The stent includes a radially expandable body formed of one or more metallic filaments and a liquid-infusible mechanical anchoring layer attached to or formed in outer surface of the filaments. A drug coating in the stent is composed of a substantially polymer-free composition of an anti-restenosis drug, and has a substratum infused in the anchoring layer and a substantially continuous surface stratum of drug that is brought into direct contact with the vessel walls at the vascular site. Thus, the rate of release of the anti-restenosis drug from the surface stratum into said vascular site is determined solely by the composition of said drug coating.Type: GrantFiled: July 24, 2012Date of Patent: October 28, 2014Assignee: Biosensors International Group, Ltd.Inventors: Douglas R. Savage, Ronald E. Betts
-
Publication number: 20140200654Abstract: An intravascular stent and method for inhibiting restenosis, following vascular injury, is disclosed. The stent has an expandable, linked-filament body and a drug-release coating formed on the stent-body filaments, for contacting the vessel injury site when the stent is placed in-situ in an expanded condition. The coating releases, for a period of at least 4 weeks, a restenosis-inhibiting amount of a monocyclic triene immunosuppressive compound having an alkyl group substituent at carbon position 40 in the compound. The stent, when used to treat a vascular injury, gives good protection against clinical restenosis, even when the extent of vascular injury involves vessel overstretching by more than 30% diameter. Also disclosed is a stent having a drug-release coating composed of (i) 10 and 60 weight percent poly-dl-lactide polymer substrate and (ii) 40-90 weight percent of an anti-restenosis compound, and a polymer undercoat having a thickness of between 1-5 microns.Type: ApplicationFiled: March 18, 2014Publication date: July 17, 2014Applicant: Biosensors International Group, Ltd.Inventors: John E. Shulze, Ronald E. Betts, Douglas R. Savage
-
Patent number: 8715341Abstract: An intravascular stent and method for inhibiting restenosis, following vascular injury, is disclosed. The stent has an expandable, linked-filament body and a drug-release coating formed on the stent-body filaments, for contacting the vessel injury site when the stent is placed in-situ in an expanded condition. The coating releases, for a period of at least 4 weeks, a restenosis-inhibiting amount of a monocyclic triene immunosuppressive compound having an alkyl group substituent at carbon position 40 in the compound. The stent, when used to treat a vascular injury, gives good protection against clinical restenosis, even when the extent of vascular injury involves vessel overstretching by more than 30% diameter. Also disclosed is a stent having a drug-release coating composed of (i) 10 and 60 weight percent poly-dl-Iactide polymer substrate and (ii) 40-90 weight percent of an anti-restenosis compound, and a polymer undercoat having a thickness of between 1-5 microns.Type: GrantFiled: October 9, 2012Date of Patent: May 6, 2014Assignee: Biosensors International Group, Ltd.Inventors: John E. Shulze, Ronald E. Betts, Douglas R. Savage
-
Patent number: 8545550Abstract: An intravascular stent and method for inhibiting restenosis, following vascular injury, is disclosed. The stent has an expandable, linked-filament body and a drug-release coating formed on the stent-body filaments, for contacting the vessel injury site when the stent is placed in-situ in an expanded condition. The coating releases, for a period of at least 4 weeks, a restenosis-inhibiting amount of the macrocyclic triene immunosuppressive compound everolimus. The stent, when used to treat a vascular injury, gives good protection against clinical restenosis, even when the extent of vascular injury involves vessel overstretching by more than 30% diameter. Also disclosed is a stent having a drug-release coating composed of (i) 10 and 60 weight percent poly-dl-lactide polymer substrate and (ii) 40-90 weight percent of an anti-restenosis compound, and a polymer undercoat having a thickness of between 1-5 microns.Type: GrantFiled: July 24, 2012Date of Patent: October 1, 2013Assignee: Biosensors International Group, Ltd.Inventors: John E. Shulze, Ronald E. Betts, Douglas R. Savage
-
Publication number: 20130035754Abstract: An intravascular stent and method for inhibiting restenosis, following vascular injury, is disclosed. The stent has an expandable, linked-filament body and a drug-release coating formed on the stent-body filaments, for contacting the vessel injury site when the stent is placed in-situ in an expanded condition. The coating releases, for a period of at least 4 weeks, a restenosis-inhibiting amount of a monocyclic triene immunosuppressive compound having an alkyl group substituent at carbon position 40 in the compound. The stent, when used to treat a vascular injury, gives good protection against clinical restenosis, even when the extent of vascular injury involves vessel overstretching by more than 30% diameter. Also disclosed is a stent having a drug-release coating composed of (i) 10 and 60 weight percent poly-dl-Iactide polymer substrate and (ii) 40-90 weight percent of an anti-restenosis compound, and a polymer undercoat having a thickness of between 1-5 microns.Type: ApplicationFiled: October 9, 2012Publication date: February 7, 2013Applicant: Biosensors International Group, Ltd.Inventors: John E. SHULZE, Ronald E. BETTS, Douglas R. SAVAGE
-
Publication number: 20130006350Abstract: An intravascular stent and method for inhibiting restenosis, following vascular injury, is disclosed. The stent has an expandable, linked-filament body and a drug-release coating formed on the stent-body filaments, for contacting the vessel injury site when the stent is placed in-situ in an expanded condition. The coating releases, for a period of at least 4 weeks, a restenosis-inhibiting amount of the macrocyclic triene immunosuppressive compound everolimus. The stent, when used to treat a vascular injury, gives good protection against clinical restenosis, even when the extent of vascular injury involves vessel overstretching by more than 30% diameter. Also disclosed is a stent having a drug-release coating composed of (i) 10 and 60 weight percent poly-dl-lactide polymer substrate and (ii) 40-90 weight percent of an anti-restenosis compound, and a polymer undercoat having a thickness of between 1-5 microns.Type: ApplicationFiled: July 24, 2012Publication date: January 3, 2013Applicant: Biosensors International Group, Ltd.Inventors: John E. Shulze, Ronald E. Betts, Douglas R. Savage
-
Publication number: 20120330406Abstract: An improvement in drug-eluting stents, and method of their making, are disclosed. The surface of a metal stent is roughened to have a surface roughness of at least about 20 ?in (0.5 ?m) and a surface roughness range of between about 300-700 ?in (7.5-17.5 ?m). The roughened stent surface is covered with a polymer-free coating of a limus drug, to a coating thickness greater than the range of surface roughness of the roughened stent surface.Type: ApplicationFiled: July 20, 2012Publication date: December 27, 2012Applicant: Biosensors International Group, Ltd.Inventors: Douglas R. Savage, John E. Shulze, Ronald E. Betts, Sepehr Fariabi, Shih-Horng Su
-
Publication number: 20120290076Abstract: A radially expandable, endovascular stent designed for placement at a site of vascular injury, for inhibiting restenosis at the site, a method of using, and a method of making the stent. The stent includes a radially expandable body formed of one or more metallic filaments and a liquid-infusible mechanical anchoring layer attached to or formed in outer surface of the filaments. A drug coating in the stent is composed of a substantially polymer-free composition of an anti-restenosis drug, and has a substratum infused in the anchoring layer and a substantially continuous surface stratum of drug that is brought into direct contact with the vessel walls at the vascular site. Thus, the rate of release of the anti-restenosis drug from the surface stratum into said vascular site is determined solely by the composition of said drug coating.Type: ApplicationFiled: July 24, 2012Publication date: November 15, 2012Applicant: Biosensors International Group, Ltd.Inventors: Douglas R. SAVAGE, Ronald E. BETTS
-
Patent number: 8308795Abstract: An intravascular stent and method for inhibiting restenosis, following vascular injury, is disclosed. The stent has an expandable, linked-filament body and a drug-release coating formed on the stent-body filaments, for contacting the vessel injury site when the stent is placed in-situ in an expanded condition. The coating releases, for a period of at least 4 weeks, a restenosis-inhibiting amount of a monocyclic triene immunosuppressive compound having an alkyl group substituent at carbon position 40 in the compound. The stent, when used to treat a vascular injury, gives good protection against clinical restenosis, even when the extent of vascular injury involves vessel overstretching by more than 30% diameter. Also disclosed is a stent having a drug-release coating composed of (i) 10 and 60 weight percent poly-dl-lactide polymer substrate and (ii) 40-90 weight percent of an anti-restenosis compound, and a polymer undercoat having a thickness of between 1-5 microns.Type: GrantFiled: January 29, 2010Date of Patent: November 13, 2012Assignee: Biosensors International Group, Ltd.Inventors: John E. Shulze, Ronald E. Betts, Douglas R. Savage
-
Patent number: 8252047Abstract: A radially expandable, endovascular stent designed for placement at a site of vascular injury, for inhibiting restenosis at the site, a method of using, and a method of making the stent. The stent includes a radially expandable body formed of one or more metallic filaments and a liquid-infusible mechanical anchoring layer attached to or formed in outer surface of the filaments. A drug coating in the stent is composed of a substantially polymer-free composition of an anti-restenosis drug, and has a substratum infused in the anchoring layer and a substantially continuous surface stratum of drug that is brought into direct contact with the vessel walls at the vascular site. Thus, the rate of release of the anti-restenosis drug from the surface stratum into said vascular site is determined solely by the composition of said drug coating.Type: GrantFiled: February 8, 2011Date of Patent: August 28, 2012Assignee: Biosensors International Group, Ltd.Inventors: Douglas R. Savage, Ronald E. Betts
-
Patent number: 8252046Abstract: An intravascular stent and method for inhibiting restenosis, following vascular injury, is disclosed. The stent has an expandable, linked-filament body and a drug-release coating formed on the stent-body filaments, for contacting the vessel injury site when the stent is placed in-situ in an expanded condition. The coating releases, for a period of at least 4 weeks, a restenosis-inhibiting amount of the macrocyclic triene immunosuppressive compound everolimus. The stent, when used to treat a vascular injury, gives good protection against clinical restenosis, even when the extent of vascular injury involves vessel overstretching by more than 30% diameter. Also disclosed is a stent having a drug-release coating composed of (i) 10 and 60 weight percent poly-dl-lactide polymer substrate and (ii) 40-90 weight percent of an anti-restenosis compound, and a polymer undercoat having a thickness of between 1-5 microns.Type: GrantFiled: December 15, 2009Date of Patent: August 28, 2012Assignee: Biosensors International Group, Ltd.Inventors: John E. Shulze, Ronald E. Betts, Douglas R. Savage
-
Publication number: 20120029626Abstract: A radially expandable, endovascular stent designed for placement at a site of vascular injury, for inhibiting restenosis at the site, a method of using, and a method of making the stent. The stent includes a radially expandable body formed of one or more metallic filaments where at least one surface of the filaments has a roughened or abraded surface. The stent may include a therapeutic agent on the abraded surface.Type: ApplicationFiled: August 10, 2011Publication date: February 2, 2012Applicant: Biosensors International GroupInventors: Douglas R. Savage, John E. Schulze, Ronald E. Betts, Sepehr Fariabi, Shih-Horng Su
-
Patent number: 8067055Abstract: A radially expandable, endovascular stent designed for placement at a site of vascular injury, for inhibiting restenosis at the site, a method of using, and a method of making the stent. The stent includes a radially expandable body formed of one or more metallic filaments where at least one surface of the filaments has a roughened or abraded surface. The stent may include a therapeutic agent on the abraded surface.Type: GrantFiled: March 23, 2007Date of Patent: November 29, 2011Assignee: Biosensors International Group, Ltd.Inventors: Douglas R. Savage, John E. Shulze, Ronald E. Betts, Sepehr Fariabi, Shih-Horng Su
-
Publication number: 20110123704Abstract: A radially expandable, endovascular stent designed for placement at a site of vascular injury, for inhibiting restenosis at the site, a method of using, and a method of making the stent. The stent includes a radially expandable body formed of one or more metallic filaments and a liquid-infusible mechanical anchoring layer attached to or formed in outer surface of the filaments. A drug coating in the stent is composed of a substantially polymer-free composition of an anti-restenosis drug, and has a substratum infused in the anchoring layer and a substantially continuous surface stratum of drug that is brought into direct contact with the vessel walls at the vascular site. Thus, the rate of release of the anti-restenosis drug from the surface stratum into said vascular site is determined solely by the composition of said drug coating.Type: ApplicationFiled: February 8, 2011Publication date: May 26, 2011Applicant: Biosensors International Group, Ltd.Inventors: Douglas R. Savage, Ronald E. Betts
-
Patent number: 7901451Abstract: A radially expandable, endovascular stent designed for placement at a site of vascular injury, for inhibiting restenosis at the site, a method of using, and a method of making the stent. The stent includes a radially expandable body formed of one or more metallic filaments and a liquid-infusible mechanical anchoring layer attached to or formed in outer surface of the filaments. A drug coating in the stent is composed of a substantially polymer-free composition of an anti-restenosis drug, and has a substratum infused in the anchoring layer and a substantially continuous surface stratum of drug that is brought into direct contact with the vessel walls at the vascular site. Thus, the rate of release of the anti-restenosis drug from the surface stratum into said vascular site is determined solely by the composition of said drug coating.Type: GrantFiled: September 22, 2005Date of Patent: March 8, 2011Assignee: Biosensors International Group, Ltd.Inventors: Douglas R. Savage, Ronald E. Betts, John E. Shulze