Patents by Inventor Douglas S. Hine

Douglas S. Hine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200197706
    Abstract: A method of delivering a pacing lead may include locating a potential implantation site adjacent to or within the triangle of Koch region of a patient's heart. The method may include advancing a pacing lead to the potential implantation site. The pacing lead has an elongate body and a fixation element coupled to a distal portion and attachable to the right-atrial endocardium adjacent to or within the triangle of Koch region. The method may include implanting the pacing lead at the potential implantation site to or sense electrical activity of the left ventricle in the basal and/or septal region of the left ventricular myocardium of the patient's heart. The pacing lead may include a lumen configured to receive a guide wire. A sheath of a delivery system used to deliver the pacing lead may include two or more curves to facilitate implanting the pacing lead at the implantation site.
    Type: Application
    Filed: December 20, 2019
    Publication date: June 25, 2020
    Inventors: Nathan A. Grenz, Ronald A. Drake, Zhongping Yang, Douglas S. Hine
  • Publication number: 20200078585
    Abstract: A relatively compact implantable medical device includes a fixation member formed by a plurality of fingers mounted around a perimeter of a distal end of a housing of the device; each finger is elastically deformable from a relaxed condition to an extended condition, to accommodate delivery of the device to a target implant site, and from the relaxed condition to a compressed condition, to accommodate wedging of the fingers between opposing tissue surfaces at the target implant site, wherein the compressed fingers hold a cardiac pacing electrode of the device in intimate tissue contact for the delivery of pacing stimulation to the site. Each fixation finger is preferably configured to prevent penetration thereof within the tissue when the fingers are compressed and wedged between the opposing tissue surfaces. The pacing electrode may be mounted on a pacing extension, which extends distally from the distal end of the device housing.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 12, 2020
    Inventors: Michael D. Eggen, James K. Carney, Matthew D. Bonner, Vladimir Grubac, Douglas S. Hine, Thomas D. Brostrom, John L. Sommer
  • Patent number: 10478620
    Abstract: A relatively compact implantable medical device includes a fixation member formed by a plurality of fingers mounted around a perimeter of a distal end of a housing of the device; each finger is elastically deformable from a relaxed condition to an extended condition, to accommodate delivery of the device to a target implant site, and from the relaxed condition to a compressed condition, to accommodate wedging of the fingers between opposing tissue surfaces at the target implant site, wherein the compressed fingers hold a cardiac pacing electrode of the device in intimate tissue contact for the delivery of pacing stimulation to the site. Each fixation finger is preferably configured to prevent penetration thereof within the tissue when the fingers are compressed and wedged between the opposing tissue surfaces. The pacing electrode may be mounted on a pacing extension, which extends distally from the distal end of the device housing.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: November 19, 2019
    Assignee: Medtronic, Inc.
    Inventors: Michael D Eggen, James K Carney, Matthew D Bonner, Vladimir Grubac, Douglas S Hine, Thomas D Brostrom, John L Sommer
  • Publication number: 20160059003
    Abstract: A relatively compact implantable medical device includes a fixation member formed by a plurality of fingers mounted around a perimeter of a distal end of a housing of the device; each finger is elastically deformable from a relaxed condition to an extended condition, to accommodate delivery of the device to a target implant site, and from the relaxed condition to a compressed condition, to accommodate wedging of the fingers between opposing tissue surfaces at the target implant site, wherein the compressed fingers hold a cardiac pacing electrode of the device in intimate tissue contact for the delivery of pacing stimulation to the site. Each fixation finger is preferably configured to prevent penetration thereof within the tissue when the fingers are compressed and wedged between the opposing tissue surfaces. The pacing electrode may be mounted on a pacing extension, which extends distally from the distal end of the device housing.
    Type: Application
    Filed: October 20, 2014
    Publication date: March 3, 2016
    Inventors: Michael D. Eggen, James K. Carney, Matthew D. Bonner, Vladimir Grubac, Douglas S. Hine, Thomas D. Brostrom, John L. Sommer
  • Patent number: 8639340
    Abstract: A connector sleeve includes a lumen adapted to receive a medical lead connector wherein a retention element engages a retention edge formed at a distal end of a connector element included on the lead connector. The connector sleeve further includes a contact element adapted to electrically engage the lead connector element within the lumen and an external conductive surface electrically coupled to the contact element and adapted for electrical engagement within the connector bore of an implantable medical device.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: January 28, 2014
    Assignee: Medtronic, Inc.
    Inventors: John L. Sommer, Douglas S. Hine, Douglas N. Hess
  • Patent number: 8437856
    Abstract: A lead connector is terminated proximally by a connector pin and includes a circumferential array of connector pads, each connector pad coupled to an electrode via an elongated insulated conductor. A lumen of an adaptor is adapted to engage the lead connector and includes an electrical contact zone formed therein and positioned for coupling with a one of the array of connector pads, when the connector is engaged within the lumen, in order to facilitate electrical connection of a selected electrode corresponding to the one of the array of connector pads.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: May 7, 2013
    Assignee: Medtronic, Inc.
    Inventors: John L. Sommer, Douglas S. Hine
  • Publication number: 20120130466
    Abstract: A lead connector is terminated proximally by a connector pin and includes a circumferential array of connector pads, each connector pad coupled to an electrode via an elongated insulated conductor. A lumen of an adaptor is adapted to engage the lead connector and includes an electrical contact zone formed therein and positioned for coupling with a one of the array of connector pads, when the connector is engaged within the lumen, in order to facilitate electrical connection of a selected electrode corresponding to the one of the array of connector pads.
    Type: Application
    Filed: November 21, 2011
    Publication date: May 24, 2012
    Applicant: Medtronic, Inc.
    Inventors: John L. Sommer, Douglas S. Hine
  • Patent number: 8065008
    Abstract: A lead connector is terminated proximally by a connector pin and includes a circumferential array of connector pads, each connector pad coupled to an electrode via an elongated insulated conductor. A lumen of an adaptor is adapted to engage the lead connector and includes an electrical contact zone formed therein and positioned for coupling with a one of the array of connector pads, when the connector is engaged within the lumen, in order to facilitate electrical connection of a selected electrode corresponding to the one of the array of connector pads.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: November 22, 2011
    Assignee: Medtronic, Inc.
    Inventors: John L. Sommer, Douglas S. Hine
  • Patent number: 8043126
    Abstract: An improved medical lead assembly and method of use is provided. The lead assembly includes a lead body, and a spring member positioned adjacent to the lead body. The spring member may be deployed a selectable amount to maintain the lead body in a fixed location within a patient's body. The spring member may be an expandable coil, a mesh structure that is similar to a stent, or any other similar device that may be positioned in a low-profile state during a lead implant procedure. After the lead is positioned at a target destination, the spring member may be deployed an amount that is selected based on the characteristics of the surrounding tissue, including vessel size. According to one aspect of the invention, the lead assembly may provide means for facilitating chronic lead extraction.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: October 25, 2011
    Assignee: Medtronic, Inc.
    Inventors: Vicki L. Bjorklund, John L. Sommer, Douglas S. Hine, Charles J. Love, Douglas N. Hess, Nicolaas M. Lokhoff
  • Patent number: 8019420
    Abstract: A lead connector including a connector element array is fitted into a selected adaptor from a plurality of adaptors to electrically couple one or more elements of the connector element array, corresponding to one or more selected electrodes from an array of lead electrodes, to one or more contact zones of the selected adaptor in order to facilitate electrical connection with an implantable medical device.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: September 13, 2011
    Assignee: Medtronic, Inc.
    Inventors: Douglas S. Hine, John L. Sommer, John Gurley
  • Publication number: 20100256719
    Abstract: An improved medical lead assembly and method of use is provided. The lead assembly includes a lead body, and a spring member positioned adjacent to the lead body. The spring member may be deployed a selectable amount to maintain the lead body in a fixed location within a patient's body. The spring member may be an expandable coil, a mesh structure that is similar to a stent, or any other similar device that may be positioned in a low-profile state during a lead implant procedure. After the lead is positioned at a target destination, the spring member may be deployed an amount that is selected based on the characteristics of the surrounding tissue, including vessel size. According to one aspect of the invention, the lead assembly may provide means for facilitating chronic lead extraction.
    Type: Application
    Filed: June 15, 2010
    Publication date: October 7, 2010
    Applicant: Medtronic, Inc.
    Inventors: Vicki L. Bjorklund, John L. Sommer, Douglas S. Hine, Charles J. Love, Douglas N. Hess, Nicolaas M. Lokhoff
  • Patent number: 7769451
    Abstract: In some embodiments, a method for optimizing cardiac resynchronization therapy (CRT) may include one or more of the following steps: (a) conducting a baseline measurement of a physical parameter of a patient before initiating CRT, (b) performing an implantation process including implanting a pacing device and pacing leads in the patient, the pacing device and pacing leads for providing the CRT, (c) initiating CRT on the patient, (d) measuring the physical parameter of the patient after initiation of the CRT, (e) comparing the measured physical parameter after initiation of the CRT to the baseline measure of the physical parameter to analyze the patient's response to the CRT, (f) adjusting the CRT during the implantation process to try and improve the patient's response to the CRT, and (g) repositioning at least one of the patient leads during the implantation process to try and improve the patient's response to the CRT.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: August 3, 2010
    Assignee: Medtronic, Inc.
    Inventors: Zhongping Yang, Mark A. Hjelle, Douglas S. Hine
  • Patent number: 7736198
    Abstract: An improved medical lead assembly and method of use is provided. The lead assembly includes a lead body, and a spring member positioned adjacent to the lead body. The spring member may be deployed a selectable amount to maintain the lead body in a fixed location within a patient's body. The spring member may be an expandable coil, a mesh structure that is similar to a stent, or any other similar device that may be positioned in a low-profile state during a lead implant procedure. After the lead is positioned at a target destination, the spring member may be deployed an amount that is selected based on the characteristics of the surrounding tissue, including vessel size. According to one aspect of the invention, the lead assembly may provide means for facilitating chronic lead extraction.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: June 15, 2010
    Assignee: Medtronic, Inc.
    Inventors: Vicki L. Bjorklund, John L. Sommer, Douglas S. Hine, Charles J. Love, Douglas N. Hess, Nicolaas M. Lokhoff
  • Publication number: 20080300664
    Abstract: A medical electrical lead, which may be useful in coupling an implantable medical device, is comprised of a first and second lead. The first lead has a first electrode coupled adjacent a distal end portion thereof. The distal end portion of the first lead is anchorable in the coronary sinus of a patient. The second lead is coupled with and moveable along the first lead. The second lead has a second electrode located thereon wherein the position of the first and second electrodes may be varied relative to one another by movement of the second lead along the first lead. A rubber tip holds the relative position of each electrode.
    Type: Application
    Filed: May 6, 2008
    Publication date: December 4, 2008
    Inventors: DOUGLAS S. HINE, John L. Sommer, James H. Vaughan, Rick D. McVenes, Paulus C. Van Venrooij, Pierre-Andre Grandjean
  • Patent number: 7386351
    Abstract: A medical electrical lead, which may be useful in coupling an implantable medical device, is comprised of a first and second lead. The first lead has a first electrode coupled adjacent a distal end portion thereof. The distal end portion of the first lead is anchorable in the coronary sinus of a patient. The second lead is coupled with and moveable along the first lead. The second lead has a second electrode located thereon wherein the position of the first and second electrodes may be varied relative to one another by movement of the second lead along the first lead. A rubber tip holds the relative position of each electrode.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: June 10, 2008
    Assignee: Medtronic, Inc.
    Inventors: Douglas S. Hine, John L. Sommer, James H. Vaughan, Rick D. McVenes, Paulus C Van Venrooij, Pierre-Andre Grandjean
  • Patent number: 7283878
    Abstract: A lead stabilization and extension wire that enables the withdrawal of a guide catheter over an electrical medical lead body without dislodging an electrode or sensor from an implantation site or detaching the fixation mechanism and methods of use and a kit are disclosed. The lead stabilizer and retraction wire comprises a wire sheath and an elongated core wire insertable within a sheath lumen. The sheath is insertable within a lead body lumen and includes a movable lead clamp that can engage with a lead connector element and a friction element frictionally engaging the core wire to maintain the extension wire length. The lead stabilizer and retraction wire is insertable into the lead body lumen enabling retraction of the guide catheter over the lead stabilization and extension wire while force is applied through the lead stabilization and extension wire to maintain the distal electrode at the implantation site.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: October 16, 2007
    Assignee: Medtronic, Inc.
    Inventors: Thomas D. Brostrom, Ryan T. Bauer, Douglas S. Hine
  • Patent number: 7225035
    Abstract: A pacing lead includes a first pacing cathode coupled to a first conductor, a second pacing cathode coupled to a second conductor, and a flexible anode coupled to a third conductor. The flexible anode has a length less than approximately 10 millimeters and is spaced apart from and proximal to the first pacing cathode and spaced apart from and distal to the second pacing cathode. The spacing between the anode and the first pacing cathode is approximately equal to the spacing between the anode and the second pacing cathode.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: May 29, 2007
    Assignee: Medtronic, Inc.
    Inventors: Scott J. Brabec, Douglas S. Hine
  • Patent number: 7142919
    Abstract: The present invention provides a method and apparatus for assessing ventricular function on a chronic basis using a plurality of electrodes disposed on or about a left ventricle and/or a right ventricle—and optionally, at least one mechanical or metabolic sensor—all operatively electrically coupled to an implantable medical device. The plurality of electrodes are preferably spaced-apart so that at least one electrode is disposed electrical communication with a discrete volume of ventricular tissue. In one embodiment, the discrete volume of tissue is defined by multiple longitudinal and axial planes as known and used in the medical arts.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: November 28, 2006
    Assignee: Medtronic, Inc.
    Inventors: Douglas S. Hine, Ven Manda, John L. Sommer
  • Patent number: 7107105
    Abstract: An improved medical lead assembly and method of use is provided. The lead assembly includes a lead body, and a spring member positioned adjacent to the lead body. The spring member may be deployed a selectable amount to maintain the lead body in a fixed location within a patient's body. The spring member may be an expandable coil, a mesh structure that is similar to a stent, or any other similar device that may be positioned in a low-profile state during a lead implant procedure. After the lead is positioned at a target destination, the spring member may be deployed an amount that is selected based on the characteristics of the surrounding tissue, including vessel size. According to one aspect of the invention, the lead assembly may provide means for facilitating chronic lead extraction.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: September 12, 2006
    Assignee: Medtronic, Inc.
    Inventors: Vicki L. Bjorklund, John L Sommer, Douglas S. Hine, Charles J. Love, Douglas N. Hess, Nicolaas M. Lokhoff
  • Patent number: 7076309
    Abstract: An electrical lead includes an elongate body having a proximal end and a fixation member joined to the elongate body and distally disposed from the proximal end of the elongate body, wherein the fixation member is capable of being extended from and retracted toward the elongate body. A method includes advancing an electrical lead into vasculature and extending a fixation member from the body of the electrical lead to fixedly engage the electrical lead within the vasculature. The method may further include retracting the fixation member toward the body of the electrical lead to unengage the electrical lead within the vasculature and retracting the electrical lead from the vasculature.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: July 11, 2006
    Assignee: Medtronic, Inc.
    Inventors: Douglas S. Hine, John L. Sommer, Vicki L. Bjorklund, Bernhard Kupper