Patents by Inventor Douglas S. McGregor
Douglas S. McGregor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11255986Abstract: A radiation detector to monitor the neutron flux of a nuclear reactor or other high-radiation environment, that can withstand the high temperatures and radiation fields of such environment, is provided. A small dielectric substrate with a low neutron-activation cross section is provided. The substrate is coated with a neutron conversion material, such as uranium oxide or thorium oxide. One or more substrates form a micro-sized detection cavity that is filled with a detection gas. A voltage is provided across anode and cathode wires in the detection cavity. A neutron absorbed in the conversion material may release reaction products into the gas, causing ionization of the gas which then produces a current or voltage signal. The small detector volume minimizes energy deposition into the detection gas by competing particles such as gamma rays, fast electrons, and beta particles, and therefore minimizes false counts while retaining large signals from neutron interactions.Type: GrantFiled: February 8, 2018Date of Patent: February 22, 2022Inventor: Douglas S. McGregor
-
Patent number: 10107924Abstract: A semiconductor neutron detector and a semiconductor process is provided to manufacture a semiconductor neutron detector. First, a substrate with flat surface having a dielectric layer is formed thereon is provided. Thereafter, a masking pattern is applied and etched into the dielectric layer to expose semiconductor features on opposite sides of the substrate. The semiconductor substrate is submerged into an etchant composed of a semiconductor etching solution to etch deep cavities into the substrate in the exposed regions. Afterwards, dopant impurities are introduced and are driven into the semiconductor, under high temperature, into opposite sides of the etched features to produce one or more rectifying junctions. Afterwards, LiF and/or B particles are forced into the cavities through high velocity methods.Type: GrantFiled: July 11, 2016Date of Patent: October 23, 2018Inventors: Steven L. Bellinger, Ryan G. Fronk, Douglas S. McGregor
-
Publication number: 20180180750Abstract: A radiation detector to monitor the neutron flux of a nuclear reactor or other high-radiation environment, that can withstand the high temperatures and radiation fields of such environment, is provided. A small dielectric substrate with a low neutron-activation cross section is provided. The substrate is coated with a neutron conversion material, such as uranium oxide or thorium oxide. One or more substrates form a micro-sized detection cavity that is filled with a detection gas. A voltage is provided across anode and cathode wires in the detection cavity. A neutron absorbed in the conversion material may release reaction products into the gas, causing ionization of the gas which then produces a current or voltage signal. The small detector volume minimizes energy deposition into the detection gas by competing particles such as gamma rays, fast electrons, and beta particles, and therefore minimizes false counts while retaining large signals from neutron interactions.Type: ApplicationFiled: February 8, 2018Publication date: June 28, 2018Inventor: Douglas S. McGregor
-
Patent number: 9958561Abstract: A neutron detection apparatus includes a neutron detector and an analyzer. The neutron detector includes a plurality of neutron detector assemblies, where each of the neutron detector assemblies includes a plurality of neutron detection devices. The neutron detector also includes a moderating volume. The plurality of neutron detector assemblies are disposed within the moderating volume so as to form a three-dimensional array of neutron detection devices within the moderating volume. The analyzer is communicatively coupled to each of the neutron detection devices of the plurality of neutron detector assemblies. The analyzer configured to receive one or more measured response signals from each of the neutron detection devices, and perform one or more analysis procedures to determine one or more characteristics associated with the one or more neutron sources based at least on the received one or more measured response signals.Type: GrantFiled: October 10, 2016Date of Patent: May 1, 2018Assignees: The Curators of the University of Missouri, Kansas State University Research FoundationInventors: Steven L. Bellinger, Simon Bolding, Anthony N. Caruso, Brian Cooper, Joseph A. Crow, James Currie, Ryan G. Fronk, Cory B. Hoshor, Douglas S. McGregor, William H. Miller, Eliot R. Myers, Thomas M. Oakes, Brent J. Rogers, John K. Shultis, Philip B. Ugorowski, Stephen M. Young
-
Patent number: 9817138Abstract: Gas-filled neutron detectors, an imaging system and an array of such detectors are provided. Surfaces or surface portions incorporated into the gas-filled neutron detectors are coated with and/or composed of at least partially, neutron reactive material. The surfaces may be flat or curved, fins or plates, foils, thin sheets, porous or filamentary material, or semi-solid material or aerogel. The incorporation of the extended surfaces coated with or composed of neutron reactive material increases the neutron detection efficiency of the gas-filled detectors. The surfaces can be made of conductive, semiconductive, semi-insulating, or insulative materials. The surfaces are arranged such that they do not detrimentally detract from the main function of a gas-filled detector with particular attention to gas-filled proportional detectors. The surfaces may be arranged in the detectors to allow for modular construction.Type: GrantFiled: February 22, 2013Date of Patent: November 14, 2017Inventor: Douglas S. McGregor
-
Patent number: 9797065Abstract: A crystal can be formed using vapor deposition. In one set of embodiments, the crystal can be grown such that the crystal selectively grown along a particular surface at a relatively faster rate as compared to another surface. In another embodiment, the assist material may aid in transporting or depositing the vapor species of a constituent to surfaces of the crystal. In a further set of embodiments, the crystal can be vapor grown in the presence of an assist material that is attracted to or repelled from a particular location of the crystal to increase or reduce crystal growth rate at a region adjacent to the location. The position of the relatively locally greater net charge within the assist material may affect the crystal plane to which the assist material is attracted or repelled. An as-grown crystal may be achieved that has a predetermined geometric shape.Type: GrantFiled: August 10, 2012Date of Patent: October 24, 2017Inventors: Elsa Ariesanti, Douglas S. McGregor
-
Publication number: 20170153340Abstract: A neutron detection apparatus includes a neutron detector and an analyzer. The neutron detector includes a plurality of neutron detector assemblies, where each of the neutron detector assemblies includes a plurality of neutron detection devices. The neutron detector also includes a moderating volume. The plurality of neutron detector assemblies are disposed within the moderating volume so as to form a three-dimensional array of neutron detection devices within the moderating volume. The analyzer is communicatively coupled to each of the neutron detection devices of the plurality of neutron detector assemblies. The analyzer configured to receive one or more measured response signals from each of the neutron detection devices, and perform one or more analysis procedures to determine one or more characteristics associated with the one or more neutron sources based at least on the received one or more measured response signals.Type: ApplicationFiled: October 10, 2016Publication date: June 1, 2017Inventors: Steven L. Bellinger, Simon Bolding, Anthony N. Caruso, Brian Cooper, Joseph A. Crow, James Currie, Ryan G. Fronk, Cory B. Hoshor, Douglas S. McGregor, William H. Miller, Eliot R. Myers, Thomas M. Oakes, Brent J. Rogers, John K. Shultis, Philip B. Ugorowski, Stephen M. Young
-
Patent number: 9625590Abstract: A neutron detection system may include a neutron detector including a plurality of neutron detection devices, a plurality of discrete neutron moderating elements, wherein each of the neutron moderating elements is disposed between two or more neutron detection devices, the plurality of neutron detection devices and the plurality of discrete neutron moderating elements disposed along a common axis, a control system configured to generate a detector response library, wherein the detector response library includes one or more sets of data indicative of a response of the detector to a known neutron source, receive one or more measured neutron response signals from each of the neutron devices, the one or more measured response signals response to a detected neutron event, and determine one or more characteristics of neutrons emanating from a measured neutron source by comparing the one or more measured neutron response signals to the detector response library.Type: GrantFiled: May 19, 2015Date of Patent: April 18, 2017Assignees: The Curators of the Univesity of Missouri, Kansas State University Research FoundationInventors: Steven L. Bellinger, Anthony N. Caruso, Brian Cooper, William L. Dunn, Ryan G. Fronk, Douglas S. McGregor, William H. Miller, Eliot R. Myers, Thomas M. Oakes, Philip B. Ugorowski, John K. Shultis, Timothy J. Sobering, Cory B. Hoshor
-
Publication number: 20170010370Abstract: A semiconductor neutron detector and a semiconductor process is provided to manufacture a semiconductor neutron detector. First, a substrate with flat surface having a dielectric layer is formed thereon is provided. Thereafter, a masking pattern is applied and etched into the dielectric layer to expose semiconductor features on opposite sides of the substrate. The semiconductor substrate is submerged into an etchant composed of a semiconductor etching solution to etch deep cavities into the substrate in the exposed regions. Afterwards, dopant impurities are introduced and are driven into the semiconductor, under high temperature, into opposite sides of the etched features to produce one or more rectifying junctions. Afterwards, LiF and/or B particles are forced into the cavities through high velocity methods.Type: ApplicationFiled: July 11, 2016Publication date: January 12, 2017Inventors: Steven L. Bellinger, Ryan G. Fronk, Douglas S. McGregor
-
Patent number: 9465120Abstract: A neutron detection system includes a plurality of neutron detector assemblies, the neutron detector assemblies including a plurality of neutron detection devices, wherein the neutron detection devices are configured to detect one or more characteristics of neutrons emanating from one or more neutron sources and impinging on one or more neutron detection devices; a plurality of discrete moderating elements, wherein each of the discrete moderating elements is disposed proximate to at least one neutron detector assembly, the plurality of neutron detector assemblies and the plurality of discrete moderating elements disposed along a common axis, wherein the discrete moderating elements are configured to moderate the energy of neutrons impinging on one or more of the neutron-photon detector assemblies; and a control system configured to: determine one or more characteristics associated with the one or more neutron sources based on the received one or more measured response signals.Type: GrantFiled: March 5, 2015Date of Patent: October 11, 2016Inventors: Steven L. Bellinger, Simon Bolding, Anthony N. Caruso, Brian Cooper, Joseph A. Crow, James Currie, Ryan G. Fronk, Cory B. Hoshor, Douglas S. McGregor, William H. Miller, Eliot R Myers, Thomas M. Oakes, Brent J. Rogers, John K. Shultis, Philip B. Ugorowski, Stephen M. Young
-
Patent number: 9081100Abstract: A neutron detection system may include a neutron detector including a plurality of neutron detection devices, a plurality of discrete neutron moderating elements, wherein each of the neutron moderating elements is disposed between two or more neutron detection devices, the plurality of neutron detection devices and the plurality of discrete neutron moderating elements disposed along a common axis, a control system configured to generate a detector response library, wherein the detector response library includes one or more sets of data indicative of a response of the detector to a known neutron source, receive one or more measured neutron response signals from each of the neutron devices, the one or more measured response signals response to a detected neutron event, and determine one or more characteristics of neutrons emanating from a measured neutron source by comparing the one or more measured neutron response signals to the detector response library.Type: GrantFiled: October 29, 2012Date of Patent: July 14, 2015Assignees: The Curator of the University of Missouri, Kansas State University Research FoundationInventors: Steven L. Bellinger, Anthony N. Caruso, Brian Cooper, William L. Dunn, Ryan G. Fronk, Douglas S. McGregor, William H. Miller, Eliot R. Myers, Thomas M. Oakes, Philip B. Ugorowski, John K. Shultis, Timothy J. Sobering, Cory B. Hoshor
-
Patent number: 8778715Abstract: A method of making a neutron detector such as a microstructured semiconductor neutron detector is provided. The method includes the step of providing a particle-detecting substrate having a surface and a plurality of cavities extending into the substrate from the surface. The method also includes filling the plurality of cavities with a neutron-responsive material. The step of filling including the step of centrifuging nanoparticles of the neutron-responsive material with the substrate for a time and a rotational velocity sufficient to backfill the cavities with the nanoparticles. The material is responsive to neutrons absorbed, thereby, for releasing ionizing radiation reaction products.Type: GrantFiled: June 24, 2013Date of Patent: July 15, 2014Assignee: Radiation Detection Technologies, Inc.Inventors: Steven L. Bellinger, Ryan G. Fronk, Douglas S. McGregor
-
Publication number: 20130344636Abstract: A method of making a neutron detector such as a microstructured semiconductor neutron detector is provided. The method includes the step of providing a particle-detecting substrate having a surface and a plurality of cavities extending into the substrate from the surface. The method also includes filling the plurality of cavities with a neutron-responsive material. The step of filling including the step of centrifuging nanoparticles of the neutron-responsive material with the substrate for a time and a rotational velocity sufficient to backfill the cavities with the nanoparticles.Type: ApplicationFiled: June 24, 2013Publication date: December 26, 2013Inventors: Steven L. Bellinger, Ryan G. Fronk, Douglas S. McGregor
-
Publication number: 20130228696Abstract: Gas-filled neutron detectors, an imaging system and an array of such detectors are provided. Surfaces or surface portions incorporated into the gas-filled neutron detectors are coated with and/or composed of at least partially, neutron reactive material. The surfaces may be flat or curved, fins or plates, foils, thin sheets, porous or filamentary material, or semi-solid material or aerogel. The incorporation of the extended surfaces coated with or composed of neutron reactive material increases the neutron detection efficiency of the gas-filled detectors. The surfaces can be made of conductive, semiconductive, semi-insulating, or insulative materials. The surfaces are arranged such that they do not detrimentally detract from the main function of a gas-filled detector with particular attention to gas-filled proportional detectors. The surfaces may be arranged in the detectors to allow for modular construction.Type: ApplicationFiled: February 22, 2013Publication date: September 5, 2013Inventors: Douglas S. McGregor, Steven L. Bellinger, Kyle A. Nelson
-
Patent number: 8519350Abstract: Surfaces or surface portions incorporated into gas-filled neutron detectors are coated with and/or composed of at least partially, neutron reactive material. The surfaces may be flat or curved fins or plates, foils, porous or filamentary material, or semi-solid material or aerogel. The incorporation of the extended surfaces coated with or composed of neutron reactive material increases the neutron detection efficiency of the gas-filled detectors over conventional coated designs. These surfaces or surface portions increase the amount of neutron reactive material present in the detector over conventional coated designs and, as a result, increase the neutron detection efficiency. The surfaces can be made of conductive, semiconductive or insulative materials. The surfaces are arranged such that they do not detrimentally detract from the main function of a gas-filled detector with particular attention to gas-filled proportional detectors.Type: GrantFiled: February 24, 2012Date of Patent: August 27, 2013Inventors: Douglas S. McGregor, Steven L. Bellinger, Walter J. McNeil, Martin F. Ohmes, Kyle A. Nelson
-
Publication number: 20130040095Abstract: A crystal can be formed using vapor deposition. In one set of embodiments, the crystal can be grown such that the crystal selectively grown along a particular surface at a relatively faster rate as compared to another surface. In another embodiment, the assist material may aid in transporting or depositing the vapor species of a constituent to surfaces of the crystal. In a further set of embodiments, the crystal can be vapor grown in the presence of an assist material that is attracted to or repelled from a particular location of the crystal to increase or reduce crystal growth rate at a region adjacent to the location. The position of the relatively locally greater net charge within the assist material may affect the crystal plane to which the assist material is attracted or repelled. An as-grown crystal may be achieved that has a predetermined geometric shape.Type: ApplicationFiled: August 10, 2012Publication date: February 14, 2013Inventors: Elsa Ariesanti, Douglas S. McGregor
-
Publication number: 20120217406Abstract: Surfaces or surface portions incorporated into gas-filled neutron detectors are coated with and/or composed of at least partially, neutron reactive material. The surfaces may be flat or curved fins or plates, foils, porous or filamentary material, or semi-solid material or aerogel. The incorporation of the extended surfaces coated with or composed of neutron reactive material increases the neutron detection efficiency of the gas-filled detectors over conventional coated designs. These surfaces or surface portions increase the amount of neutron reactive material present in the detector over conventional coated designs and, as a result, increase the neutron detection efficiency. The surfaces can be made of conductive, semiconductive or insulative materials. The surfaces are arranged such that they do not detrimentally detract from the main function of a gas-filled detector with particular attention to gas-filled proportional detectors.Type: ApplicationFiled: February 24, 2012Publication date: August 30, 2012Inventors: Douglas S. McGregor, Steven L. Bellinger, Walter J. McNeil, Martin F. Ohmes, Kyle A. Nelson
-
Patent number: 7855372Abstract: Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.Type: GrantFiled: March 16, 2007Date of Patent: December 21, 2010Assignee: Kansas State University Research FoundationInventors: Douglas S. McGregor, John K. Shultis, Blake B. Rice, Walter J. McNeil, Clell J. Solomon, Eric L. Patterson, Steven L. Bellinger
-
Publication number: 20090302231Abstract: Non-streaming high-efficiency perforated semiconductor neutron detectors, method of making same and measuring wands and detector modules utilizing same are disclosed. The detectors have improved mechanical structure, flattened angular detector responses, and reduced leakage current. A plurality of such detectors can be assembled into imaging arrays, and can be used for neutron radiography, remote neutron sensing, cold neutron imaging, SNM monitoring, and various other applications.Type: ApplicationFiled: March 16, 2007Publication date: December 10, 2009Applicant: KANSAS STATE UNIVERSITY RESEARCH FOUNDATIONInventors: Douglas S. McGregor, John K. Shultis, Blake B. Rice, Walter J. McNeil, Clell J. Solomon, Eric L. Patterson, Steven L. Bellinger
-
Patent number: 7164138Abstract: Neutron detectors, advanced detector process techniques and advanced compound film designs have greatly increased neutron-detection efficiency. One embodiment of the detectors utilizes a semiconductor wafer with a matrix of spaced cavities filled with one or more types of neutron reactive material such as 10B or 6LiF. The cavities are etched into both the front and back surfaces of the device such that the cavities from one side surround the cavities from the other side. The cavities may be etched via holes or etched slots or trenches. In another embodiment, the cavities are different-sized and the smaller cavities extend into the wafer from the lower surfaces of the larger cavities. In a third embodiment, multiple layers of different neutron-responsive material are formed on one or more sides of the wafer. The new devices operate at room temperature, are compact, rugged, and reliable in design.Type: GrantFiled: October 29, 2003Date of Patent: January 16, 2007Assignee: The Regents of the University of MichiganInventors: Douglas S. McGregor, Raymond Klann