Patents by Inventor Douglas Way

Douglas Way has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7790012
    Abstract: A low-energy method and system of forming hydroxide ions in an electrochemical cell. On applying a low voltage across the anode and cathode, hydroxide ions form in the electrolyte containing the cathode, protons form at the anode but a gas e.g. chlorine or oxygen does not form at the anode.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: September 7, 2010
    Assignee: Calera Corporation
    Inventors: Donald W. Kirk, J. Douglas Way, Allen J. Bard, Ryan J. Gilliam, Kasra Farsad, Valentin Decker
  • Publication number: 20100155258
    Abstract: A low-energy method and system of forming hydroxide ions in an electrochemical cell. On applying a low voltage across the anode and cathode, hydroxide ions form in the electrolyte containing the cathode, protons form at the anode but a gas e.g. chlorine or oxygen does not form at the anode.
    Type: Application
    Filed: December 23, 2008
    Publication date: June 24, 2010
    Inventors: Donald W. Kirk, J. Douglas Way, Allen J. Bard, Ryan J. Gilliam, Kasra Farsad, Valentin Decker
  • Publication number: 20100135882
    Abstract: Methods of sequestering carbon dioxide (CO2) are provided. Aspects of the methods include precipitating a storage stable carbon dioxide sequestering product from an alkaline-earth-metal-containing water and then disposing of the product, e.g., by placing the product in a disposal location or using the product as a component of a manufactured composition. Also provided are systems for practicing methods of the invention.
    Type: Application
    Filed: February 2, 2010
    Publication date: June 3, 2010
    Inventors: Brent R. Constantz, Andrew Youngs, Philip Brian Tuet, Sidney Omelon, Kasra Farsad, Ryan J. Gilliam, Valentin Decker, Donald W. Kirk, J. Douglas Way, Allen J. Bard, Robert Danziger, Miguel Fernandez, Cecily Ryan
  • Publication number: 20100132556
    Abstract: Methods of sequestering carbon dioxide (CO2) are provided. Aspects of the methods include precipitating a storage stable carbon dioxide sequestering product from an alkaline-earth-metal-containing water and then disposing of the product, e.g., by placing the product in a disposal location or using the product as a component of a manufactured composition. Also provided are systems for practicing methods of the invention.
    Type: Application
    Filed: February 2, 2010
    Publication date: June 3, 2010
    Inventors: Brent R. Constantz, Andrew Youngs, Philip Brian Tuet, Sidney Omelon, Kasra Farsad, Ryan J. Gilliam, Valentin Decker, Donald W. Kirk, J. Douglas Way, Allen J. Bard, Robert Danziger, Miguel Fernandez, Cecily Ryan
  • Publication number: 20090176012
    Abstract: The invention provides support-free palladium membranes and methods of making these membranes. Single-gas testing of the unsupported foils produced hydrogen permeabilities equivalent to thicker membranes produced by cold-rolling. Defect-free films as thin as 7.2 microns can be fabricated, with ideal H2/N2 selectivities as high as 40,000. Homogeneous membrane compositions may also be produced using these methods.
    Type: Application
    Filed: August 22, 2008
    Publication date: July 9, 2009
    Inventors: J. Douglas Way, Paul Thoen, Sabina K. Gade
  • Publication number: 20090169452
    Abstract: Methods of sequestering carbon dioxide (CO2) are provided. Aspects of the methods include precipitating a storage stable carbon dioxide sequestering product from an alkaline-earth-metal-containing water and then disposing of the product, e.g., by placing the product in a disposal location or using the product as a component of a manufactured composition. Also provided are systems for practicing methods of the invention.
    Type: Application
    Filed: December 24, 2008
    Publication date: July 2, 2009
    Inventors: Brent R. Constantz, Andrew Youngs, Philip Brian Tuet, Sidney Omelon, Kasra Farsad, Ryan J. Gilliam, Valentin Decker, Donald W. Kirk, J. Douglas Way, Allen J. Bard
  • Patent number: 6668325
    Abstract: The present invention provides obfuscation techniques for enhancing software security. In one embodiment, a method for obfuscation techniques for enhancing software security includes selecting a subset of code (e.g., compiled source code of an application) to obfuscate, and obfuscating the selected subset of the code. The obfuscating includes applying an obfuscating transformation to the selected subset of the code. The transformed code can be weakly equivalent to the untransformed code. The applied transformation can be selected based on a desired level of security (e.g., resistance to reverse engineering). The applied transformation can include a control transformation that can be creating using opaque constructs, which can be constructed using aliasing and concurrency techniques. Accordingly, the code can be obfuscated for enhanced software security based on a desired level of obfuscation (e.g., based on a desired potency, resilience, and cost).
    Type: Grant
    Filed: June 9, 1998
    Date of Patent: December 23, 2003
    Assignee: InterTrust Technologies
    Inventors: Christian Sven Collberg, Clark David Thomborson, Douglas Wai Kok Low
  • Publication number: 20030190486
    Abstract: The invention is directed to a method for producing Palladium alloy composite membranes that are useful in applications that involve the need to separate hydrogen from a gas mixture. Further, in one embodiment, a Pd alloy composite membrane is realized in which the Pd alloy film is 1 &mgr;m or less in thickness and resistant to poisoning by sulfide compounds. Further, the Pd alloy composite membranes are applied to a number of applications, such a fuel reforming.
    Type: Application
    Filed: April 3, 2003
    Publication date: October 9, 2003
    Inventors: Fernando Roa, J. Douglas Way, Stephen N. Paglieri
  • Patent number: 5652020
    Abstract: A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2. s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia.
    Type: Grant
    Filed: January 29, 1996
    Date of Patent: July 29, 1997
    Assignee: The State of Oregon Acting By and Through the State Board of Higher Education on Behalf of Oregon State University
    Inventors: John P. Collins, J. Douglas Way
  • Patent number: 5451386
    Abstract: A hydrogen-selective membrane comprises a tubular porous ceramic support having a palladium metal layer deposited on an inside surface of the ceramic support. The thickness of the palladium layer is greater than about 10 .mu.m but typically less than about 20 .mu.m. The hydrogen permeation rate of the membrane is greater than about 1.0 moles/m.sup.2.s at a temperature of greater than about 500.degree. C. and a transmembrane pressure difference of about 1,500 kPa. Moreover, the hydrogen-to-nitrogen selectivity is greater than about 600 at a temperature of greater than about 500.degree. C. and a transmembrane pressure of about 700 kPa. Hydrogen can be separated from a mixture of gases using the membrane. The method may include the step of heating the mixture of gases to a temperature of greater than about 400.degree. C. and less than about 1000.degree. C. before the step of flowing the mixture of gases past the membrane. The mixture of gases may include ammonia.
    Type: Grant
    Filed: May 19, 1993
    Date of Patent: September 19, 1995
    Assignee: The State of Oregon Acting By and Through the State Board of Higher Education on Behalf of OSU
    Inventors: John P. Collins, J. Douglas Way
  • Patent number: 4910930
    Abstract: A seismic isolation structure for use in conjunction with a foundation of a building which has a plurality of footings and a building which has a plurality of columns. At least one high damping elastomeric bearing is mounted on the footing and supports the column. At least one ultimate restraint device is connected between the footing and the support column. The ultimate restraint device is spaced apart and separate from the bearing.
    Type: Grant
    Filed: October 28, 1988
    Date of Patent: March 27, 1990
    Assignee: Base Isolation Consultants, Inc.
    Inventor: Douglas Way