Patents by Inventor Doutje Van Veen
Doutje Van Veen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220123863Abstract: Various example embodiments for supporting forward error correction (FEC) in a communication system are presented. Various example embodiments for supporting FEC in a communication system may include the selection of a FEC setting for a communication channel from a transmitter to a receiver, e.g., the selection of a FEC setting for a communication channel, the selection of a FEC setting for a data burst sent over a communication channel, the selection of a FEC setting for a portion of a data burst sent over a communication channel, switching between FEC settings for different portions of a data burst over a communication channel, or the like, as well as various combinations thereof.Type: ApplicationFiled: September 9, 2021Publication date: April 21, 2022Inventors: Yannick Lefevre, Adriaan de Lind van Wijngaarden, Jochen Maes, Vincent Houtsma, Doutje Van Veen, Amitkumar Mahadevan, Michaƫl Fivez
-
Patent number: 11309973Abstract: A passive optical network having an optical-signal monitor configured to monitor carrier-wavelength drifts during optical bursts transmitted between the optical line terminal and optical network units thereof. In an example embodiment, the optical-signal monitor uses heterodyne beating between two differently delayed portions of an optical burst to generate an estimate of the carrier-wavelength drift during that optical burst. The passive optical network may also include an electronic controller configured to use the estimates generated by the optical-signal monitor to make configuration changes at the optical network units and/or implement other control measures directed at reducing to an acceptable level the amounts of carrier-wavelength drift during the optical bursts and/or mitigating some adverse effects thereof.Type: GrantFiled: January 31, 2018Date of Patent: April 19, 2022Assignee: NOKIA SOLUTIONS AND NETWORKS OYInventors: Vincent Houtsma, Doutje van Veen
-
Publication number: 20210281501Abstract: Various example embodiments for supporting forward error correction (FEC) in a communication system are presented. Various example embodiments for supporting FEC in a communication system may include selection of a FEC setting (e.g., an amount of puncturing and/or shortening of a FEC code, a FEC code, or the like) for a communication channel from a transmitter to a receiver based on channel characteristic information of the communication channel from the transmitter to the receiver (e.g., transfer function information, channel loss information, noise characteristic information, error information (e.g., bit error rate, error modeling, or the like), or the like). Various example embodiments for supporting FEC in a communication system, based on selection of a FEC setting for a communication channel based on channel characteristic information of the communication channel, may be applied within various types of communication systems, including various types of wired and/or wireless communication systems.Type: ApplicationFiled: March 6, 2020Publication date: September 9, 2021Inventors: Amitkumar Mahadevan, Doutje Van Veen, Noriaki Kaneda, Vincent Houtsma, Paul Cautereels, Carl Mertens, Michael Fivez
-
Publication number: 20190253152Abstract: A PON having an OLT configured to send downlink transmissions to ONUs using amplitude modulation and two symbol rates. An example ONU includes a clock-recovery circuit capable of continuous clock extraction from the received variable-rate modulated optical signal. The continuous clock extraction can be achieved, e.g., by (i) configuring the photodetector to convert the higher-rate portions of the received optical signal into transformed electrical waveforms while converting the lower-rate portions thereof into similar electrical waveforms and (ii) configuring the clock-recovery circuit to phase-align the clock signal with signal transitions in the resulting sequence of transformed and similar electrical waveforms. An ONU configured to operate in this manner can advantageously stay locked to the received data signal during transmissions at both symbol rates, without the need to reacquire the clock signal at each rate change and/or at the beginning of each packet intended for the host ONU.Type: ApplicationFiled: February 14, 2018Publication date: August 15, 2019Applicant: Nokia Solutions and Networks OYInventors: Vincent Houtsma, Doutje van Veen
-
Publication number: 20190238235Abstract: A passive optical network having an optical-signal monitor configured to monitor carrier-wavelength drifts during optical bursts transmitted between the optical line terminal and optical network units thereof. In an example embodiment, the optical-signal monitor uses heterodyne beating between two differently delayed portions of an optical burst to generate an estimate of the carrier-wavelength drift during that optical burst. The passive optical network may also include an electronic controller configured to use the estimates generated by the optical-signal monitor to make configuration changes at the optical network units and/or implement other control measures directed at reducing to an acceptable level the amounts of carrier-wavelength drift during the optical bursts and/or mitigating some adverse effects thereof.Type: ApplicationFiled: January 31, 2018Publication date: August 1, 2019Inventors: Vincent Houtsma, Doutje van Veen
-
Publication number: 20190207702Abstract: A coherent optical receiver capable of receiving data encoded in optical bursts whose optical power can vary significantly from burst to burst. In an example embodiment, the coherent optical receiver comprises a variable optical attenuator connected between an optical local oscillator and an optical hybrid and configured to controllably vary the intensity of the local-oscillator signal in response to a control signal generated by a control circuit. In an example embodiment, the control circuit is configured to generate the control signal for the variable optical attenuator using power-control settings read from a memory and further using a transmission schedule according to which different remote optical transmitters are scheduled to transmit their respective optical bursts. The power-control settings can be loaded into the memory, e.g., using a suitable calibration method configured to determine a respective nearly optimal coherent gain for receiving data from each of the remote optical transmitters.Type: ApplicationFiled: December 29, 2017Publication date: July 4, 2019Applicant: Nokia Solutions and Networks OYInventors: Doutje van Veen, Vincent Houtsma
-
Publication number: 20190074908Abstract: A coherent optical receiver having an analog electrical circuit connected to combine the outputs of multiple photodetectors to generate an electrical output signal from which the data encoded in a received modulated optical signal can be recovered in a robust and straightforward manner. In an example embodiment, the analog electrical circuit includes one or more transimpedance amplifiers connected between the photodetectors and the receiver's output port. The coherent optical receiver may include a dual-polarization optical hybrid coupled to eight photodiodes to enable polarization-insensitive detection of the received modulated optical signal. The signal processing implemented in the analog electrical circuit advantageously enables the use of relatively inexpensive local-oscillator sources that may have relaxed specifications with respect to linewidth and wavelength stability.Type: ApplicationFiled: September 6, 2017Publication date: March 7, 2019Applicant: Nokia Solutions and Networks OYInventors: Sian Chong Lee, Vincent Houtsma, Doutje van Veen, Chen Zhu, Noriaki Kaneda, Michael Eggleston
-
Patent number: 8879914Abstract: A method and apparatus for controlling traffic in an optical network having a plurality of OLTs for communicating with a plurality of PONs. A traffic controller receives traffic information concerning current traffic volume and, preferably with reference to a rules database, calculates the number of OLTs required to support the current traffic volume. A separate determination may be made whether a network reconfiguration is permitted at this time. If a reconfiguration is permitted, the traffic controller configures a traffic control switch to route the PON traffic to an from only the calculated number of OLTs. The traffic control switch may be implemented using a voltage-controlled optical fiber coupling or electronically, routing the traffic as electrical signals to and from electro-optical converters associated with each PON. The OLTs to be used may be selected by the traffic controller.Type: GrantFiled: February 23, 2011Date of Patent: November 4, 2014Assignee: Alcatel LucentInventors: Dusan Suvakovic, Doutje Van Veen
-
Publication number: 20130272721Abstract: Introduced herein is an optical network device employing three-level duobinary modulation and a method of use thereof. One embodiment of an optical network receiver module includes: (1) an optical input configured to receive an optical non-return-to-zero (NRZ) signal having a data rate, and (2) an encoder having a maximum bandwidth, coupled to the optical input and configured to receive and encode the optical NRZ signal into an electrical three-level duobinary signal, the maximum bandwidth being related to, but substantially less than, the data rate.Type: ApplicationFiled: March 28, 2013Publication date: October 17, 2013Applicant: Alcatel-Lucent USA, Inc.Inventors: Doutje van Veen, Vincent E. Houtsma, Peter J. Winzer
-
Publication number: 20110206370Abstract: A method and apparatus for controlling traffic in an optical network having a plurality of OLTs for communicating with a plurality of PONs. A traffic controller receives traffic information concerning current traffic volume and, preferably with reference to a rules database, calculates the number of OLTs required to support the current traffic volume. A separate determination may be made whether a network reconfiguration is permitted at this time. If a reconfiguration is permitted, the traffic controller configures a traffic control switch to route the PON traffic to an from only the calculated number of OLTs. The traffic control switch may be implemented using a voltage-controlled optical fiber coupling or electronically, routing the traffic as electrical signals to and from electro-optical converters associated with each PON. The OLTs to be used may be selected by the traffic controller.Type: ApplicationFiled: February 23, 2011Publication date: August 25, 2011Applicant: Alcatel-Lucent USA Inc.Inventors: Dusan Suvakovic, Doutje Van Veen
-
Publication number: 20060133809Abstract: Systems and techniques for multiple bit rate optical data transmission. A passive optical network includes an optical line termination unit (OLT) connected to one or more optical network units (ONUs) by optical elements. The OLT is capable of performing downstream transmission to the ONUs at each of a variety of different bit rates, and each ONU performs upstream transmission at one or more bit rates. The OLT can sense a bit rate of a received transmission and change its operation so as to receive and process the transmission exhibiting the sensed bit rate. Each of the ONUs receives and processes downstream transmissions at one or more bit rates, but each ONU is capable of maintaining a phase and frequency lock to downstream transmissions at all bit rates supported by the OLT. One or more of the ONUs may also receive and process downstream transmissions exhibiting different or changed bit rates.Type: ApplicationFiled: December 17, 2004Publication date: June 22, 2006Applicant: Lucent Technologies, Inc.Inventors: Hungkei Chow, Manyalibo Matthews, Dusan Suvakovic, Doutje Van Veen