Patents by Inventor Douyan ZHAO

Douyan ZHAO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11512407
    Abstract: The present invention discloses a method and a device for laser-assisted electrochemical composite deposition using a rifling-type hollow rotating electrode, which relate to the field of micro-composite processing in special processing technologies. A center of a laser beam is allowed to pass through a rifling-type hollow rotating electrode and focus onto a cathode substrate. When the rifling-type hollow rotating electrode is rotated at a constant speed, an electrodeposition solution rotates in the rifling-type hollow rotating electrode and generates a certain centripetal force to improve the precision and localization of deposition. During the process of the present invention, an internal rifling structure of the electrode is rotated at a high speed so that the deposition solution generates a centripetal force. The internal rifling structure and an external helical structure of the rifling-type hollow rotating electrode make the deposition solution move upward to form a “self-circulation” system.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: November 29, 2022
    Assignee: Jiangsu University
    Inventors: Zhaoyang Zhang, Yucheng Wu, Kun Xu, Xueren Dai, Shuai Yang, Sheng Guo, Douyan Zhao
  • Publication number: 20220305587
    Abstract: The present invention provides a composite processing method and device for a texture on an inner surface of a bearing shell of a radial sliding bearing. A surface of a workpiece to be processed is processed by laser to obtain a micron-level texture, an obtained workpiece with the micron-level texture on a surface is placed on a compression device, and the workpiece with the micron-level texture on the surface is subjected to an electro-deposition reaction to obtain a workpiece with a nano-level texture on a surface. The processing device includes an inner spin-printing electrode electrochemical deposition system, a laser irradiation system and a motion control system. The inner spin-printing electrode electrochemical deposition system includes the inner spin-printing electrode, a direct current power supply, the bearing shell and a compression roller.
    Type: Application
    Filed: July 12, 2021
    Publication date: September 29, 2022
    Applicant: Jiangsu University
    Inventors: Zhaoyang ZHANG, Jian GAO, Kun XU, Tao WANG, Mengnan HU, Yucheng WU, Douyan ZHAO
  • Publication number: 20220307150
    Abstract: The present invention discloses a method and a device for laser-assisted electrochemical composite deposition using a rifling-type hollow rotating electrode, which relate to the field of micro-composite processing in special processing technologies. A center of a laser beam is allowed to pass through a rifling-type hollow rotating electrode and focus onto a cathode substrate. When the rifling-type hollow rotating electrode is rotated at a constant speed, an electrodeposition solution rotates in the rifling-type hollow rotating electrode and generates a certain centripetal force to improve the precision and localization of deposition. During the process of the present invention, an internal rifling structure of the electrode is rotated at a high speed so that the deposition solution generates a centripetal force. The internal rifling structure and an external helical structure of the rifling-type hollow rotating electrode make the deposition solution move upward to form a “self-circulation” system.
    Type: Application
    Filed: July 12, 2021
    Publication date: September 29, 2022
    Applicant: Jiangsu University
    Inventors: Zhaoyang ZHANG, Yucheng WU, Kun XU, Xueren DAI, Shuai YANG, Sheng GUO, Douyan ZHAO
  • Patent number: 11295953
    Abstract: An apparatus for micromachining a semiconductor material from opposing sides through synchronous coordination of laser and electrochemistry includes an optical path system, a stable low-pressure jet generation system, and an electrolytic machining system. The optical path system includes a laser generator, a beam expander, a reflector, a galvanometer, and a lens. The electrolytic machining system includes a direct-current pulsed power supply, an adjustable cathode fixture, an electrolyte tank, a current probe, and an oscilloscope. The stable low-pressure jet generation system provides an electrolyte flow into a metal needle. The electrolyte flow forms an electrolyte layer between a semiconductor material and a cathode copper plate, such that the cathode and the anode are in electrical contact with each other. In a method employing the apparatus, a laser beam is irradiated onto the semiconductor material to form a local high-temperature region, which leads to a localized increase in electrical conductivity.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: April 5, 2022
    Assignee: JIANGSU UNIVERSITY
    Inventors: Hao Zhu, Zhi Zhang, Senshan Mao, Shuaijie Zhu, Zhaoyang Zhang, Kun Xu, Anbin Wang, Douyan Zhao
  • Publication number: 20210358756
    Abstract: An apparatus for micromachining a semiconductor material from opposing sides through synchronous coordination of laser and electrochemistry includes an optical path system, a stable low-pressure jet generation system, and an electrolytic machining system. The optical path system includes a laser generator, a beam expander, a reflector, a galvanometer, and a lens. The electrolytic machining system includes a direct-current pulsed power supply, an adjustable cathode fixture, an electrolyte tank, a current probe, and an oscilloscope. The stable low-pressure jet generation system provides an electrolyte flow into a metal needle. The electrolyte flow forms an electrolyte layer between a semiconductor material and a cathode copper plate, such that the cathode and the anode are in electrical contact with each other. In a method employing the apparatus, a laser beam is irradiated onto the semiconductor material to form a local high-temperature region, which leads to a localized increase in electrical conductivity.
    Type: Application
    Filed: February 28, 2019
    Publication date: November 18, 2021
    Applicant: Jiangsu University
    Inventors: Hao ZHU, Shuaijie ZHU, Zhaoyang ZHANG, Kun XU, Anbin WANG, Douyan ZHAO