Patents by Inventor Dov Ramm

Dov Ramm has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8516410
    Abstract: A novel and useful method of migrating an analog or mixed signal electronic circuit from a source technology to a target technology. Devices operating in current mode and their respective voltage tuning nodes are first identified in the source technology electronic circuit. Since a device operating in current mode is less sensitive to the voltage applied to its voltage tuning node, the voltage at the voltage tuning node can be changed to achieve better current mode device performance without interfering with the biasing conditions of other devices in the circuit. This enables a circuit designer to fully exploit the two available degrees of freedom (typically width and length) when migrating the electronic device operating in current mode from a source technology to a target technology.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: August 20, 2013
    Assignee: International Business Machines Corporation
    Inventors: Daniel Nahmanny, Dov Ramm, Benny Sheinman
  • Patent number: 7969324
    Abstract: An automatic vehicular traffic flow control technique defines a controlled area, wherein vehicles belonging to different traffic streams contend for occupancy of a conflict zone. A traversal order is computed for the vehicles in the controlled area, wherein the ordered vehicles are assigned to traverse the conflict zone sequentially in accordance with their respective positions in the traversal order. Tracking and tracked vehicles are designated, wherein a respective tracked vehicle immediately precedes each of the tracking vehicles in the traversal order. The tracking vehicles maintain a specified physical relationship with their respective tracked vehicles until the tracked vehicle has traversed the conflict zone. The speed of the traffic streams is increased as necessary so as to achieve a desired throughput through the conflict zone.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: June 28, 2011
    Assignee: International Business Machines Corporation
    Inventors: Dan Shmuel Chevion, Dov Ramm, Yuval Shimony, Ron Sivan
  • Patent number: 7840057
    Abstract: Methods, and program storage devices, for performing model-based optical proximity correction by providing a region of interest (ROI) having an interaction distance and locating at least one polygon within the ROI. A cut line of sample points representative of a set of vertices, or plurality of cut lines, are generated within the ROI across at least one lateral edge of the polygon(s). An angular position, and first and second portions of the cut line residing on opposing sides of an intersection between the cut line and the lateral edge of the polygon are determined, followed by generating a new ROI by extending the original ROI beyond its interaction distance based on such angular position, and first and second portions of the cut line. In this manner, a variety of new ROIs may be generated, in a variety of different directions, to ultimately correct for optical proximity.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: November 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Gregg M. Gallatin, Emanuel Gofman, Kafai Lai, Mark A. Lavin, Maharaj Mukherjee, Dov Ramm, Alan E. Rosenbluth, Shlomo Shlafman
  • Patent number: 7774737
    Abstract: Methods, and a program storage device for executing such methods, for performing model-based optical proximity correction by providing a mask matrix having a region of interest (ROI) and locating a plurality of points of interest within the mask matrix. A first polygon having a number of vertices representative of the located points of interest is computed, followed by determining a spatial relation between its vertices and the ROI. The vertices of the first polygon are then pinned to boundaries of and within the ROI such that a second polygon is formed on the ROI. The process is repeated for all vertices of the first polygon such that the second polygon is collapsed onto the ROI. This collapsed second polygon is then used to correct for optical proximity.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: August 10, 2010
    Assignee: International Business Machines Corporation
    Inventors: Gregg M Gallatin, Emanuel Gofman, Kafai Lai, Mark A. Lavin, Maharaj Mukherjee, Dov Ramm, Alan E. Rosenbluth, Shlomo Shlafman
  • Patent number: 7761839
    Abstract: Methods, and a program storage device for executing such methods, for performing model-based optical proximity correction by providing a mask matrix having a region of interest (ROI) and locating a plurality of points of interest within the mask matrix. A first polygon having a number of vertices representative of the located points of interest is computed, followed by determining a spatial relation between its vertices and the ROI. The vertices of the first polygon are then pinned to boundaries of and within the ROI such that a second polygon is formed on the ROI. The process is repeated for all vertices of the first polygon such that the second polygon is collapsed onto the ROI. This collapsed second polygon is then used to correct for optical proximity.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: July 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: Gregg M. Gallatin, Emanuel Gofman, Kafai Lai, Mark A. Lavin, Maharaj Mukherjee, Dov Ramm, Alan E. Rosenbluth, Shlomo Shlafman
  • Patent number: 7761820
    Abstract: A method for migrating an electronic circuit from a source technology to a target technology includes accepting a source circuit that operates in the source technology. The source circuit includes source components interconnected at nodes in accordance with a source topology. Source voltages at the nodes of the source circuit are determined, and the source voltages are transformed to produce respective target voltages suitable for the target technology. The source circuit is separated into sub-circuits, each sub-circuit including one or more of the source components. In each sub-circuit individually, the one or more of the source components are converted to one or more respective target components in the target technology responsively to the target voltages, so as to produce a respective migrated sub-circuit. The migrated sub-circuits are reconnected to produce a target circuit in the target technology, the target circuit having a target topology identical to the source topology.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: July 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: Israel Berger, Kirill Dyagilev, Dov Ramm, Benjamin Sheinman, Oren Shlomo
  • Publication number: 20100169848
    Abstract: A novel and useful method of migrating an analog or mixed signal electronic circuit from a source technology to a target technology. Devices operating in current mode and their respective voltage tuning nodes are first identified in the source technology electronic circuit. Since a device operating in current mode is less sensitive to the voltage applied to its voltage tuning node, the voltage at the voltage tuning node can be changed to achieve better current mode device performance without interfering with the biasing conditions of other devices in the circuit. This enables a circuit designer to fully exploit the two available degrees of freedom (typically width and length) when migrating the electronic device operating in current mode from a source technology to a target technology.
    Type: Application
    Filed: December 30, 2008
    Publication date: July 1, 2010
    Inventors: Danniel Nahmanny, Dov Ramm, Benny Sheinman
  • Publication number: 20100134320
    Abstract: An automatic vehicular traffic flow control technique defines a controlled area, wherein vehicles belonging to different traffic streams contend for occupancy of a conflict zone. A traversal order is computed for the vehicles in the controlled area, wherein the ordered vehicles are assigned to traverse the conflict zone sequentially in accordance with their respective positions in the traversal order. Tracking and tracked vehicles are designated, wherein a respective tracked vehicle immediately precedes each of the tracking vehicles in the traversal order. The tracking vehicles maintain a specified physical relationship with their respective tracked vehicles until the tracked vehicle has traversed the conflict zone. The speed of the traffic streams is increased as necessary so as to achieve a desired throughput through the conflict zone.
    Type: Application
    Filed: December 1, 2008
    Publication date: June 3, 2010
    Inventors: Dan Shmuel Chevion, Dov Ramm, Yuval Shimony, Ron Sivan
  • Patent number: 7434196
    Abstract: Methods, and program storage devices, for performing model-based optical lithography corrections by partitioning a cell array layout, having a plurality of polygons thereon, into a plurality of cells covering the layout. This layout is representative of a desired design data hierarchy. A density map is then generated corresponding to interactions between the polygons and plurality of cells, and then the densities within each cell are convolved. An interaction map is formed using the convolved densities, followed by truncating the interaction map to form a map of truncated cells. Substantially identical groupings of the truncated cells are then segregated respectively into differing ones of a plurality of buckets, whereby each of these buckets comprise a single set of identical groupings of truncated cells. A hierarchical arrangement is generated using these buckets, and the desired design data hierarchy enforced using the hierarchical arrangement to ultimately correct for optical lithography.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: October 7, 2008
    Assignee: International Business Machines Corporation
    Inventors: Gregg M Gallatin, Emanuel Gofman, Kafai Lai, Mark A Lavin, Maharaj Mukherjee, Dov Ramm, Alan E Rosenbluth, Shlomo Shlafman
  • Patent number: 7409651
    Abstract: A method for migrating an electronic circuit from a source technology to a target technology includes accepting a source circuit that operates in the source technology. The source circuit includes source components interconnected at nodes in accordance with a source topology. Source voltages at the nodes of the source circuit are determined, and the source voltages are transformed to produce respective target voltages suitable for the target technology. The source circuit is separated into sub-circuits, each sub-circuit including one or more of the source components. In each sub-circuit individually, the one or more of the source components are converted to one or more respective target components in the target technology responsively to the target voltages, so as to produce a respective migrated sub-circuit. The migrated sub-circuits are reconnected to produce a target circuit in the target technology, the target circuit having a target topology identical to the source topology.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: August 5, 2008
    Assignee: International Business Machines Corporation
    Inventors: Israel Berger, Kirill Dyagilev, Dov Ramm, Benjamin Sheinman, Oren Shlomo
  • Publication number: 20080109106
    Abstract: A method for migrating an electronic circuit from a source technology to a target technology includes accepting a source circuit that operates in the source technology. The source circuit includes source components interconnected at nodes in accordance with a source topology. Source voltages at the nodes of the source circuit are determined, and the source voltages are transformed to produce respective target voltages suitable for the target technology. The source circuit is separated into sub-circuits, each sub-circuit including one or more of the source components. In each sub-circuit individually, the one or more of the source components are converted to one or more respective target components in the target technology responsively to the target voltages, so as to produce a respective migrated sub-circuit. The migrated sub-circuits are reconnected to produce a target circuit in the target technology, the target circuit having a target topology identical to the source topology.
    Type: Application
    Filed: December 27, 2007
    Publication date: May 8, 2008
    Inventors: Israel Berger, Kirill Dyagilev, Dov Ramm, Benjamin Sheinman, Oren Shlomo
  • Patent number: 7366342
    Abstract: Methods, and program storage devices, for performing model-based optical proximity correction by providing a region of interest (ROI) having an interaction distance and locating at least one polygon within the ROI. A cut line of sample points representative of a set of vertices, or plurality of cut lines, are generated within the ROI across at least one lateral edge of the polygon(s). An angular position, and first and second portions of the cut line residing on opposing sides of an intersection between the cut line and the lateral edge of the polygon are determined, followed by generating a new ROI by extending the original ROI beyond its interaction distance based on such angular position, and first and second portions of the cut line. In this manner, a variety of new ROIs may be generated, in a variety of different directions, to ultimately correct for optical proximity.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: April 29, 2008
    Assignee: International Business Machines Corporation
    Inventors: Gregg M. Gallatin, Emanuel Gofman, Kafai Lai, Mark A. Lavin, Maharaj Mukherjee, Dov Ramm, Alan E. Rosenbluth, Shlomo Shlafman
  • Patent number: 7343271
    Abstract: A first method to compute a phase map within an optical proximity correction simulation kernel utilizes simulated wavefront information from randomly generated data. A second method uses measured data from optical tools. A phase map is created by analytically embedding a randomly generated two-dimensional array of complex numbers of wavefront information, and performing an inverse Fourier Transform on the resultant array. A filtering function requires the amplitude of each element of the array to be multiplied by a Gaussian function. A power law is then applied to the array. The elements of the array are shuffled, and converted from the phasor form to real/imaginary form. A two-dimensional Fast Fourier Transform is applied. The array is then unshuffled, and converted back to phasor form.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: March 11, 2008
    Assignee: International Business Machines Corporation
    Inventors: Gregg M. Gallatin, Emanuel Gofman, Kafai Lai, Mark A. Lavin, Maharaj Mukherjee, Dov Ramm, Alan E. Rosenbluth, Shlomo Shlafman
  • Publication number: 20080059939
    Abstract: Methods, and a program storage device for executing such methods, for performing model-based optical proximity correction by providing a mask matrix having a region of interest (ROI) and locating a plurality of points of interest within the mask matrix. A first polygon having a number of vertices representative of the located points of interest is computed, followed by determining a spatial relation between its vertices and the ROI. The vertices of the first polygon are then pinned to boundaries of and within the ROI such that a second polygon is formed on the ROI. The process is repeated for all vertices of the first polygon such that the second polygon is collapsed onto the ROI. This collapsed second polygon is then used to correct for optical proximity.
    Type: Application
    Filed: October 18, 2007
    Publication date: March 6, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gregg Gallatin, Emanuel Gofman, Kafai Lai, Mark Lavin, Maharaj Mukherjee, Dov Ramm, Alan Rosenbluth, Shlomo Shlafman
  • Publication number: 20080037858
    Abstract: Methods, and program storage devices, for performing model-based optical proximity correction by providing a region of interest (ROI) having an interaction distance and locating at least one polygon within the ROI. A cut line of sample points representative of a set of vertices, or plurality of cut lines, are generated within the ROI across at least one lateral edge of the polygon(s). An angular position, and first and second portions of the cut line residing on opposing sides of an intersection between the cut line and the lateral edge of the polygon are determined, followed by generating a new ROI by extending the original ROI beyond its interaction distance based on such angular position, and first and second portions of the cut line. In this manner, a variety of new ROIs may be generated, in a variety of different directions, to ultimately correct for optical proximity.
    Type: Application
    Filed: October 18, 2007
    Publication date: February 14, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gregg Gallatin, Emanuel Gofman, Kafai Lai, Mark Lavin, Maharaj Mukherjee, Dov Ramm, Alan Rosenbluth, Shlomo Shlafman
  • Patent number: 7287239
    Abstract: Methods, and a program storage device for executing such methods, for performing model-based optical proximity correction by providing a mask matrix having a region of interest (ROI) and locating a plurality of points of interest within the mask matrix. A first polygon having a number of vertices representative of the located points of interest is computed, followed by determining a spatial relation between its vertices and the ROI. The vertices of the first polygon are then pinned to boundaries of and within the ROI such that a second polygon is formed on the ROI. The process is repeated for all vertices of the first polygon such that the second polygon is collapsed onto the ROI. This collapsed second polygon is then used to correct for optical proximity.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: October 23, 2007
    Assignee: International Business Machines Corporation
    Inventors: Gregg M. Gallatin, Emanuel Gofman, Kafai Lai, Mark A. Lavin, Maharaj Mukherjee, Dov Ramm, Alan E. Rosenbluth, Shlomo Shlafman
  • Publication number: 20070226677
    Abstract: Methods, and a program storage device for executing such methods, for performing model-based optical proximity correction by providing a mask matrix having a region of interest (ROI) and locating a plurality of points of interest within the mask matrix. A first polygon having a number of vertices representative of the located points of interest is computed, followed by determining a spatial relation between its vertices and the ROI. The vertices of the first polygon are then pinned to boundaries of and within the ROI such that a second polygon is formed on the ROI. The process is repeated for all vertices of the first polygon such that the second polygon is collapsed onto the ROI. This collapsed second polygon is then used to correct for optical proximity.
    Type: Application
    Filed: June 1, 2007
    Publication date: September 27, 2007
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gregg Gallatin, Emanuel Gofman, Kafai Lai, Mark Lavin, Maharaj Mukherjee, Dov Ramm, Alan Rosenbluth, Shlomo Shlafman
  • Publication number: 20070033550
    Abstract: A method for migrating an electronic circuit from a source technology to a target technology includes accepting a source circuit that operates in the source technology. The source circuit includes source components interconnected at nodes in accordance with a source topology. Source voltages at the nodes of the source circuit are determined, and the source voltages are transformed to produce respective target voltages suitable for the target technology. The source circuit is separated into sub-circuits, each sub-circuit including one or more of the source components. In each sub-circuit individually, the one or more of the source components are converted to one or more respective target components in the target technology responsively to the target voltages, so as to produce a respective migrated sub-circuit. The migrated sub-circuits are reconnected to produce a target circuit in the target technology, the target circuit having a target topology identical to the source topology.
    Type: Application
    Filed: August 5, 2005
    Publication date: February 8, 2007
    Applicant: International Business Machines Corporation
    Inventors: Israel Berger, Kirill Dyagilev, Dov Ramm, Benjamin Sheinman, Oren Shlomo
  • Patent number: 7131104
    Abstract: A method is described for performing model-based optical proximity corrections on a mask layout used in an optical lithography process having a plurality of mask shapes. Model-based optical proximity correction is performed by computing the image intensity on selected evaluation points on the mask layout. The image intensity to be computed includes optical flare and stray light effects due to the interactions between the shapes on the mask layout. The computation of the image intensity involves sub-dividing the mask layout into a plurality of regions, each region at an increasing distance from the evaluation point. The contributions of the optical flare and stray light effects due to mask shapes in each of the regions are then determined. Finally, all the contributions thus obtained are combined to obtain the final computation of the image intensity at the selected point.
    Type: Grant
    Filed: May 13, 2004
    Date of Patent: October 31, 2006
    Assignee: International Business Machines Coporation
    Inventors: Gregg M. Gallatin, Emanuel Gofman, Kafai Lai, Mark A. Lavin, Dov Ramm, Alan E. Rosenbluth, Shlomo Shlafman, Zheng Chen, Maharaj Mukherjee
  • Patent number: 7127699
    Abstract: A method is provided for optimizing the number of kernels N used in a sum of coherent sources (SOCS) for optical proximity correction in an optical microlithography process, including setting the number of kernels N to a predetermined minimum value Nmin, where a determination is made as to whether an accuracy estimate of calculated intensity is within a tolerable value, and a determination is also made as to whether an added X/Y asymmetry estimate of the calculated intensity is negligible.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: October 24, 2006
    Assignee: International Business Machines Corporation
    Inventors: Gregg M. Gallatin, Emanuel Gofman, Kafai Lai, Mark A. Lavin, Maharaj Mukherjee, Dov Ramm, Alan Edward Rosenbluth, Shlomo Shlafman