Patents by Inventor Doyl E. Dickel

Doyl E. Dickel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8384372
    Abstract: A method and system is disclosed to detect and analyze an electric signal based on movement between an element and a counter electrode influenced by a nonlinear electric field produced by an electrical signal impressed between the element and counter electrode. Through detection of changes in the distance between the element and the counter electrode characteristics of the element and/or the environment of the element may be ascertained. Changes in the distance between the element and the counter electrode may be monitored based on changes in the value of capacitance between the element and counter electrode. The disclosed devices and methods may be employed to detect, for instance, presence of chemical/biological species in a sample or measure physical parameters of a sample such as pressure/acceleration, density, viscosity, magnetic force, temperature, and/or extremely small masses.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: February 26, 2013
    Assignee: Clemson University
    Inventors: Herbert W. Behlow, Jr., Bevan C. Elliott, Gayatri D. Keskar, Doyl E. Dickel, Malcolm J. Skove, Apparao M. Rao
  • Patent number: 7818816
    Abstract: Disclosed are methods and devices for patterning micro- and/or nano-sized pattern elements on a substrate using field emitted electrons from an element. Disclosed methods and devices can also be utilized to form nano- and micron-sized depressions in a substrate according to a more economical process than as has been utilized in the past. Methods include single-step methods by which structures can be simultaneously created and located at desired locations on a substrate. Methods include the application of a bias voltage between a probe tip and a substrate held at a relatively close gap distance. The applied voltage can promote current flow between the probe and the substrate via field emissions. During a voltage pulse, and within predetermined energy levels and tip-to-surface gap distances, three dimensional formations can be developed on the substrate surface.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: October 19, 2010
    Assignee: Clemson University Research Foundation
    Inventors: Jason B. Reppert, Jay B. Gaillard, Bevan C. Elliott, Doyl E. Dickel, M. Pinar Mengüc, Apparao M. Rao