Patents by Inventor Doyle Miller

Doyle Miller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8075958
    Abstract: The present disclosure is generally related to providing thin hydrogen separation membranes coated on porous substrates that are useful in membrane steam reformers and methods for making same. These reformers can be integrated with protein exchange membrane (PEM) fuel cells to form power systems.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: December 13, 2011
    Assignee: Intelligent Energy, Inc.
    Inventors: Anand Chellappa, Thomas R. Vencill, W. Doyle Miller
  • Patent number: 7442152
    Abstract: A cyclist training system having a polymeric pivoting assembly which is adapted to allow a cyclist of a bicycle to nutate about the perpendicular axis when exerting lateral forces on the bicycle. The cyclist training system includes a tubular base support, a tubular bicycle support; and means to securely retain the bicycle within the cyclist training system. The polymeric pivoting assembly couples the tubular bicycle support to the tubular base support and is constructed from a polyurethane elastomer. Various embodiments of the polymeric pivoting assembly are provided having Shore A hardness in the range of 40-90 durameters and Shore D hardness in the range of 45-65 durameters. The polymeric pivoting assembly minimizes the unnatural bounce provided by other cyclist training systems known in the relevant art.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: October 28, 2008
    Inventors: Lewis Dale Peterson, Christopher Todd Maglio, Brian Doyle Miller
  • Publication number: 20070180991
    Abstract: The present disclosure is generally related to providing thin hydrogen separation membranes coated on porous substrates that are useful in membrane steam reformers and methods for making same. These reformers can be integrated with protein exchange membrane (PEM) fuel cells to form power systems.
    Type: Application
    Filed: July 29, 2004
    Publication date: August 9, 2007
    Inventors: Anand Chellappa, Tom Vencilli, Doyle Miller
  • Publication number: 20020170890
    Abstract: This invention combines the precision spray process with in-flight laser treatment in order to produce direct write electronic components. In addition to these components, the process can lay down lines of conductive, inductive, and resistive materials. This development has the potential to change the approach to electronics packaging. This process is revolutionary in that components can be directly produced on small structures, thus removing the need for printed circuit boards.
    Type: Application
    Filed: April 27, 2001
    Publication date: November 21, 2002
    Inventors: David M. Keicher, W. Doyle Miller, Marcelino Essien
  • Publication number: 20020051853
    Abstract: A method has been developed to exploit the desirable material and process characteristics provided by a low powered laser material deposition system, while overcoming the low material deposition rate imposed by the same process. One application of particular importance for this invention is direct fabrication of functional, solid objects from a CAD solid model This method of fabrication uses a software interpreter to electronically slice the CAD model into thin horizontal layers that are subsequently used to drive the deposition apparatus. The apparatus uses a single laser beam to outline the features of the solid object and then uses a series of equally spaced laser beams to quickly fill in the featureless regions. Using the lower powered laser provides the ability to create a part that is very accurate, with material properties that meet or exceed that of a conventionally processed and annealed specimen of similar composition.
    Type: Application
    Filed: April 24, 2001
    Publication date: May 2, 2002
    Inventors: David M. Keicher, W. Doyle Miller
  • Patent number: 6268584
    Abstract: A method has been developed to exploit the desirable material and process characteristics provided by a low powered laser material deposition system, while overcoming the low material deposition rate imposed by the same process. One application of particular importance for this invention is direct fabrication of functional, solid objects from a CAD solid model. This method of fabrication uses a software interpreter to electronically slice the CAD model into thin horizontal layers that are subsequently used to drive the deposition apparatus. The apparatus uses a single laser beam to outline the features of the solid object and then uses a series of equally spaced laser beams to quickly fill in the featureless regions. Using the lower powered laser provides the ability to create a part that is very accurate, with material properties that meet or exceed that of a conventionally processed and annealed specimen of similar composition.
    Type: Grant
    Filed: July 20, 1998
    Date of Patent: July 31, 2001
    Assignee: Optomec Design Company
    Inventors: David M. Keicher, W. Doyle Miller
  • Patent number: 6251488
    Abstract: This invention combines the precision spray process with in-flight laser treatment in order to produce direct write electronic components. In addition to these components, the process can lay down lines of conductive, inductive, and resistive materials. This development has the potential to change the approach to electronics packaging. This process is revolutionary in that components can be directly produced on small structures, thus removing the need for printed circuit boards.
    Type: Grant
    Filed: May 5, 1999
    Date of Patent: June 26, 2001
    Assignee: Optomec Design Company
    Inventors: W. Doyle Miller, David M. Keicher, Marcelino Essien
  • Patent number: 5993554
    Abstract: An apparatus and method have been developed to exploit the desirable material and process characteristics provided by a low powered laser material deposition system, while overcoming the low material deposition rate imposed by the same process. One application of particular importance for this invention is direct fabrication of functional, solid objects from a CAD solid model. This apparatus uses a software interpreter to electronically slice the CAD model into thin horizontal layers that are subsequently used to drive the deposition apparatus. This apparatus uses a single laser beam to outline the features of the solid object and then uses a series of equally spaced laser beams to quickly fill in the featureless regions. Using the lower powered laser provides the ability to create a part that is very accurate, with material properties that meet or exceed that of a conventionally processed and annealed specimen of similar composition.
    Type: Grant
    Filed: January 22, 1998
    Date of Patent: November 30, 1999
    Assignee: Optemec Design Company
    Inventors: David M. Keicher, W. Doyle Miller