Patents by Inventor Doyle T. Nichols

Doyle T. Nichols has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11108470
    Abstract: An optically-downconverting channelizer is disclosed for W-band detection. The channelizer includes an input waveguide configured to carry an inputted signal having a plurality of wavelengths including a desired wavelength and a plurality of ring resonators arranged in parallel and coupled at spaced apart locations along the input waveguide for receiving the inputted signal, wherein each of the plurality of ring resonators is configured to pass a selected wavelength signal to an output end. The channelizer further includes a control waveguide that carries a second signal having a wavelength that differs from the desired wavelength by a predetermined amount, and a plurality of detectors coupled to respective output ends of the ring resonators, the plurality of detectors configured to produce channelized RF output signals representative of desired RF bands.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: August 31, 2021
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Anastasios P. Goutzoulis, Doyle T. Nichols
  • Patent number: 10447409
    Abstract: An optically-downconverting channelizer is disclosed for W-band detection. The channelizer includes an input waveguide configured to carry an inputted signal having a plurality of wavelengths including a desired wavelength and a plurality of ring resonators arranged in parallel and coupled at spaced apart locations along the input waveguide for receiving the inputted signal, wherein each of the plurality of ring resonators is configured to pass a selected wavelength signal to an output end. The channelizer further includes a control waveguide that carries a second signal having a wavelength that differs from the desired wavelength by a predetermined amount, and a plurality of detectors coupled to respective output ends of the ring resonators, the plurality of detectors configured to produce channelized RF output signals representative of desired RF bands.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: October 15, 2019
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Anastasios P Goutzoulis, Doyle T Nichols
  • Publication number: 20190229815
    Abstract: An optically-downconverting channelizer is disclosed for W-band detection. The channelizer includes an input waveguide configured to carry an inputted signal having a plurality of wavelengths including a desired wavelength and a plurality of ring resonators arranged in parallel and coupled at spaced apart locations along the input waveguide for receiving the inputted signal, wherein each of the plurality of ring resonators is configured to pass a selected wavelength signal to an output end. The channelizer further includes a control waveguide that carries a second signal having a wavelength that differs from the desired wavelength by a predetermined amount, and a plurality of detectors coupled to respective output ends of the ring resonators, the plurality of detectors configured to produce channelized RF output signals representative of desired RF bands.
    Type: Application
    Filed: March 29, 2019
    Publication date: July 25, 2019
    Inventors: Anastasios P. Goutzoulis, Doyle T. Nichols
  • Publication number: 20140376921
    Abstract: An optically-downconverting channelizer is disclosed for W-band detection. The channelizer includes an input waveguide configured to carry an inputted signal having a plurality of wavelengths including a desired wavelength and a plurality of ring resonators arranged in parallel and coupled at spaced apart locations along the input waveguide for receiving the inputted signal, wherein each of the plurality of ring resonators is configured to pass a selected wavelength signal to an output end. The channelizer further includes a control waveguide that carries a second signal having a wavelength that differs from the desired wavelength by a predetermined amount, and a plurality of detectors coupled to respective output ends of the ring resonators, the plurality of detectors configured to produce channelized RF output signals representative of desired RF bands.
    Type: Application
    Filed: June 21, 2013
    Publication date: December 25, 2014
    Inventors: Anastasios P. Goutzoulis, Doyle T. Nichols
  • Patent number: 6366598
    Abstract: A waveguide (10) is provided having a two-dimensional optical wavelength Bragg grating (20) embedded within a semiconductor laser medium (16). More particularly, the waveguide (10) includes an active region (16) sandwiched between n-doped and p-doped cladding layers (14, 22). The two-dimensional Bragg grating (20) is formed in the active region (16). Upper and lower electrodes (24, 26) are defined on opposite sides of the cladding layers (14, 22) to complete the waveguide structure (10). The two-dimensional grating (20) provides simultaneous frequency selective feedback for mode control in both the longitudinal and lateral directions.
    Type: Grant
    Filed: February 10, 1999
    Date of Patent: April 2, 2002
    Assignee: TRW Inc.
    Inventors: Doyle T. Nichols, Srinath Kalluri, Michael G. Wickham, Timothy A. Vang, Michael P. Nesnidal, Robert W. Lodenkamper
  • Patent number: 6088500
    Abstract: An electroabsorptive modulator (EAM) for providing RF modulation of optical inputs signals. The EAM is formed as a semiconductor waveguide on a semiconductor substrate with an optical input port and an optical output port and electrical contacts for connection to the RF input. The configuration of the waveguide portion of the EAM is optimized to provide a modal match with the particular optical device to which the EAM is to be connected, for example, an optical fiber. By optimizing the modal match between the EAM and the optical device to which the EAM is connected, the optical insertion losses are minimized thereby improving the overall performance of the optical system. The device is formed from a plurality of quantum wells selected to compensate for the increased mode field dimensions.
    Type: Grant
    Filed: April 11, 1997
    Date of Patent: July 11, 2000
    Assignee: TRW Inc.
    Inventors: Charles A. Zmudzinski, Doyle T. Nichols
  • Patent number: 5631490
    Abstract: MSM-photodetectors are produced using implanted n-type Si and interdigitated electrodes deposited on the implanted surface. The implantation process decreases the carrier lifetime by several orders of magnitude. By implanting silicon with fluorine or oxygen, the bandwidth is increased relatively to unimplanted MSM photodetectors. Exemplary implanted photodetectors exhibited 3-dB bandwidths which were faster by an order of magnitude compared to their unimplanted counterparts. The detectors are thus compatible with multi-gigabit per second operation and monolithic integration with silicon electronics.
    Type: Grant
    Filed: January 11, 1995
    Date of Patent: May 20, 1997
    Assignee: Lucent Technologies Inc.
    Inventors: Niloy K. Dutta, Dale C. Jacobson, Doyle T. Nichols