Patents by Inventor Drazenko Babic

Drazenko Babic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11910995
    Abstract: The application relates to the problem of navigating a surgical instrument (at 301, 311) towards a region-of-interest (at 312) in endoscopic surgery when an image (300) provided by the endoscope is obscured at least partly by obscuring matter (at 303), wherein the obscuring matter is a leaking body fluid, debris or smoke caused by ablation. To address this problem, a computer-implemented method is proposed, wherein, upon detecting that the image from the endoscope is at least partly obscured, a second image is determined based on a sequence of historic images and based on the current position and orientation of the endoscope. Furthermore, a virtual image (310) is generated based on the determined second image.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: February 27, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Bernardus Hendrikus Wilhelmus Hendriks, Caifeng Shan, Marco Lai, Robert Johannes Frederik Homan, Drazenko Babic
  • Patent number: 11819252
    Abstract: The invention relates a system for implanting an implantable device in bone tissue, a processing unit for such system, a method of implanting an implantable device and a method of providing information for an implanting of an implantable device. In view of the finding that a fat content in cancellous bone is higher than a fat content in compact bone, the lipids fraction, which can be determined by optical means, e.g. spectroscopy, can be used to determine correct screw placement in healthy bone.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: November 21, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Drazenko Babic, Thirukumaran Thangaraj Kanagasabapathi, Susanne Maaike Valster, Bernardus Hendrikus Wilhelmus Hendriks
  • Publication number: 20230363645
    Abstract: The invention provides a system for investigating a tissue of a subject by way of diffuse reflectance spectroscopy, the tissue including a fluorescent agent adapted to absorb light in a first wavelength range and emit light in a second wavelength range, different to the first. The system includes a cannula having a distal end to be positioned adjacent the tissue and an internal cavity for providing a suction force to the tissue. The system further includes a light source adapted to generate light at the first wavelength range and a fiber optic element to be positioned adjacent the tissue. The fiber optic element is adapted to receive a light signal from the fluorescent agent, the light signal comprising light in the first and second wavelength ranges. The system further includes a processing system adapted to determine a concentration of the fluorescent agent in the tissue based on the light signal.
    Type: Application
    Filed: September 22, 2021
    Publication date: November 16, 2023
    Inventors: BERNARDUS HENDRIKUS WILHELMUS HENDRIKS, RAMI NACHABÉ, JARICH WILLEM SPLIETHOFF, DRAZENKO BABIC
  • Publication number: 20230240758
    Abstract: The invention relates to a system (8) for assisting a user in placing a penetrating device in tissue like a pedicle screw (7) in a vertebra’s pedicle. The system generates a virtual view (20) from a penetrating device tip perspective within the tissue in the direction of a path (21) through a model of the tissue. The virtual view is generated based on tracking information indicating a pose of the penetrating device, the model and the path, wherein the virtual view is configured such that it indicates a direction in which the user should move the penetrating device while placing it in the tissue. For instance, it can show a virtual tunnel (801) which is arranged along the path. If a user like a surgeon is provided with such a virtual view, the user can position the penetrating device along the path with a significantly increased accuracy.
    Type: Application
    Filed: June 29, 2021
    Publication date: August 3, 2023
    Inventors: JARICH WILLEM SPLIETHOFF, BERNARDUS HENDRIKUS WILHELMUS HENDRIKS, DRAZENKO BABIC, JOHANNEKE GERRIGJE GROEN, CHRISTIAN REICH, RONALDUS FREDERIK JOHANNES HOLTHUIZEN, ROBERT JOHANNES FREDERIK HOMAN
  • Patent number: 11712310
    Abstract: A system is suggested comprising an optical sensing means and a processing unit. The optical sensing means may include an optical guide with a distal end, wherein the optical guide may be configured to be arranged in a device to be inserted into tissue in a region of interest. The processing unit may be configured to receive information of a region of interest including different tissue types as well as of a path through the tissues, to determine a sequence of tissue types along the path, to determine a tissue type at the distal end of the optical guide based on information received from the optical sensing means, to compare the determined tissue type with the tissue types on the path, to determine possible positions of the distal end of the optical guide on the path based on the comparison of tissue types, and to generate a signal indicative for the possible positions.
    Type: Grant
    Filed: June 24, 2022
    Date of Patent: August 1, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ronaldus Frederik Johannes Holthuizen, Bernardus Hendrikus Wilhelmus Hendriks, Drazenko Babic, Robert Johannes Frederik Homan, Johan Juliana Dries
  • Patent number: 11571180
    Abstract: A system may generally comprise a tracking device, an ultrasound device and a processing unit. A position and orientation of the ultrasound device may be traceable by the tracking device. The processing unit may be configured (i) to receive 3D information of a region of interest in relation to a marker, with both the region of interest and the marker being located within a body, (ii) to determine the position of the marker relative to the ultrasound device based on an ultrasound image of the body including the marker, and (iii) to determine the position and orientation of the ultrasound device relative to the tracking device. The system may further comprise a visualization device and the processing unit may further be configured to generate a visualization of the region of interest in relation to an outer surface of the body.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: February 7, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Bernardus Hendrikus Wilhelmus Hendriks, Drazenko Babic, Jarich Willem Spliethoff, Torre Michelle Bydlon, Grzegorz Andrzej Toporek, Aleksandra Popovic, Christian Reich
  • Patent number: 11497562
    Abstract: A system is suggested comprising an optical sensing means and a processing unit. The optical sensing means may include an optical guide with a distal end, wherein the optical guide may be configured to be arranged in a device to be inserted into tissue in a region of interest. The processing unit may be configured to receive information of a region of interest including different tissue types as well as of a path through the tissues, to determine a sequence of tissue types along the path, to determine a tissue type at the distal end of the optical guide based on information received from the optical sensing means, to compare the determined tissue type with the tissue types on the path, to determine possible positions of the distal end of the optical guide on the path based on the comparison of tissue types, and to generate a signal indicative for the possible positions.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: November 15, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ronaldus Frederik Johannes Holthuizen, Bernardus Hendrikus Wilhelmus Hendriks, Drazenko Babic, Robert Johannes Frederik Homan, Johan Juliana Dries
  • Publication number: 20220313368
    Abstract: A system is suggested comprising an optical sensing means and a processing unit. The optical sensing means may include an optical guide with a distal end, wherein the optical guide may be configured to be arranged in a device to be inserted into tissue in a region of interest. The processing unit may be configured to receive information of a region of interest including different tissue types as well as of a path through the tissues, to determine a sequence of tissue types along the path, to determine a tissue type at the distal end of the optical guide based on information received from the optical sensing means, to compare the determined tissue type with the tissue types on the path, to determine possible positions of the distal end of the optical guide on the path based on the comparison of tissue types, and to generate a signal indicative for the possible positions.
    Type: Application
    Filed: June 24, 2022
    Publication date: October 6, 2022
    Inventors: Ronaldus Frederik Johannes HOLTHUIZEN, Bernardus Hendrikus Wilhelmus HENDRIKS, Drazenko BABIC, Robert Johannes Frederik HOMAN, Johan Juliana DRIES
  • Publication number: 20220280033
    Abstract: An orthopedic pin (100) for optically analyzing a bone region (110) includes an elongate shaft (101) and at least one optical fiber (105) The elongate shaft has a circular outer cross section with a first diameter (D1), a distal end (102) for insertion into bone, a proximal end (103), and an optical connector portion (104) disposed towards the proximal end (103). The at least one optical fiber (105) extends within the elongate shaft (101) between the optical connector portion (104), and the distal end (102) for transmitting optical radiation between the optical connector portion (104) and the bone region (110) when the distal end (102) is inserted into the bone region (110). The optical connector portion (104) comprises a reduced-diameter portion (106). The reduced-diameter portion (106) extends along at least a portion of the elongate shaft (101), and has an outer cross section comprising a width (Drd) perpendicularly with respect to the elongate shaft (101).
    Type: Application
    Filed: August 28, 2020
    Publication date: September 8, 2022
    Inventors: Bernardus Hendrikus Wilhelmus HENDRIKS, Drazenko BABIC, Jarich Willem SPLIETHOFF, Gerhardus Wilhelmus LUCASSEN, Joanneke Gerrigje GROEN, Christian REICH, Ronaldus Frederik Johannes HOLTHUIZEN, Robert Johannes Frederik HOMAN
  • Patent number: 11412985
    Abstract: A system for providing integrated guidance for positioning a biopsy device and estimating tumor size in a body has two levels of guidance: a coarse guidance and a fine guidance. The system includes a non-invasive imaging system for obtaining an image of the biopsy device in the body, for providing the coarse guidance. Furthermore, the system includes an optical element mounted on the needle for obtaining optical information discriminating tissue in the body, for providing the fine guidance.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: August 16, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Bernardus Hendrikus Wilhelmus Hendriks, Drazenko Babic
  • Publication number: 20220240759
    Abstract: The application relates to the problem of navigating a surgical instrument (at 301, 311) towards a region-of-interest (at 312) in endoscopic surgery when an image (300) provided by the endoscope is obscured at least partly by obscuring matter (at 303), wherein the obscuring matter is a leaking body fluid, debris or smoke caused by ablation. To address this problem, a computer-implemented method is proposed, wherein, upon detecting that the image from the endoscope is at least partly obscured, a second image is determined based on a sequence of historic images and based on the current position and orientation of the endoscope. Furthermore, a virtual image (310) is generated based on the determined second image.
    Type: Application
    Filed: July 10, 2020
    Publication date: August 4, 2022
    Inventors: Bernardus Hendrikus Wilhelmus HENDRIKS, Caifeng SHAN, Marco LAI, Robert Johannes Frederik HOMAN, Drazenko BABIC
  • Publication number: 20220225880
    Abstract: The present invention relates to an intravascular device (10). The device comprises an elongate member (20), an optical fiber (30), and at least one optical interaction element (40). At least a part of the elongate member is configured to be inserted into a part of a vascular system of a patient. At least a part of the optical fiber is located within the elongate member. The optical fiber is configured to transmit optical wavelength radiation. The intravascular device is configured to emit optical wavelength radiation out of the elongate member in at least two optical radiation beams for being scattered and/or reflected by a portion of the vascular system. The emission of the at least two optical radiation beams comprises interaction of the transmitted optical wavelength radiation with the at least one optical interaction element.
    Type: Application
    Filed: May 29, 2020
    Publication date: July 21, 2022
    Inventors: Manfred MUELLER, Drazenko BABIC, Gerhardus Wilhelmus LUCASSEN, Aditee KURANE
  • Publication number: 20220000580
    Abstract: The invention relates to an active marker device (100) for being introduced into a human tissue and for tracking a region of interest of a human body. The active marker device comprises a light source (101) for emitting light such that the emitted light can be detected by an optical sensor. In this way, the active marker device and/or the region of interest can be tracked by a tracking system comprising the optical sensor. The active marker device (100) further comprises a switch (102) for turning the light source on and off and for operating the light source in a pulsed mode.
    Type: Application
    Filed: September 17, 2021
    Publication date: January 6, 2022
    Inventors: BERNARDUS HENDRIKUS WILHELMUS HENDRIKS, MICHAEL GRASS, THOMAS KOEHLER, HAROLD AGNES WILHELMUS SCHMEITZ, ROLAND PROKSA, VISHNU VARDHAN PULLY, MARCO ANDREAS JACOBUS VAN AS, WALTHERUS CORNELIS JOZEF BIERHOFF, FRANCISCUS MARINUS ANTONIUS MARIA VAN GAAL, DRAZENKO BABIC
  • Patent number: 11129691
    Abstract: An active marker device (100) is introducible into a human tissue and for tracking a region of interest of a human body. The active marker device includes a light source (101) for emitting light such that the emitted light can be detected by an optical sensor. In this way, the active marker device and/or the region of interest can be tracked by a tracking system including the optical sensor. The active marker device (100) also includes a switch (102) for turning the light source on and off and for operating the light source in a pulsed mode.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: September 28, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Bernardus Hendrikus Wilhelmus Hendriks, Michael Grass, Thomas Koehler, Harold Agnes Wilhelmus Schmeitz, Roland Proksa, Vishnu Vardhan Pully, Marco Andreas Jacobus Van As, Waltherus Cornelis Jozef Bierhoff, Franciscus Marinus Antonius Maria Van Gaal, Drazenko Babic
  • Publication number: 20210236179
    Abstract: The invention relates a system for implanting an implantable device in bone tissue, a processing unit for such system, a method of implanting an implantable device and a method of providing information for an implanting of an implantable device. In view of the finding that a fat content in cancellous bone is higher than a fat content in compact bone, the lipids fraction, which can be determined by optical means, e.g. spectroscopy, can be used to determine correct screw placement in healthy bone.
    Type: Application
    Filed: April 20, 2021
    Publication date: August 5, 2021
    Inventors: Drazenko BABIC, Thirukumaran Thangaraj KANAGASABAPATHI, Susanne Maaike VALSTER, Bernardus Hendrikus Wilhelmus HENDRIKS
  • Patent number: 11033188
    Abstract: The present invention relates to an imaging device (100) for generating an image of a patient (P), the imaging system (100) comprising: a camera arrangement (10), which is configured to provide a first image information (I1) of the patient (P) using a first wavelength band, and which is configured to provide a second image information (I2) of the patient (P) using a second wavelength band. The first wavelength band and the second set of wavelength band are different; and the first and/or second image information comprises landmark information of landmarks (M) of a patient (P). The landmark information is derived by at least one wavelength band outside the visible spectrum. Further, a data processor (30) is provided, which is configured to generate a fused image (IE) based on the first image information (I1) and the second image information (I2), and which is configured to detect the landmarks (M) in the fused image (IE).
    Type: Grant
    Filed: November 26, 2015
    Date of Patent: June 15, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Robert Johannes Frederik Homan, Bernardus Hendrikus Wilhelmus Hendriks, Drazenko Babic
  • Patent number: 10993748
    Abstract: The invention relates a system for implanting an implantable device in bone tissue, a processing unit for such system, a method of implanting an implantable device and a method of providing information for an implanting of an implantable device. In view of the finding that a fat content in cancellous bone is higher than a fat content in compact bone, the lipids fraction, which can be determined by optical means, e.g. spectroscopy, can be used to determine correct screw placement in healthy bone.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: May 4, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Drazenko Babic, Thirukumaran Thangaraj Kanagasabapathi, Susanne Maaike Valster, Bernardus Hendrikus Wilhelmus Hendriks
  • Patent number: 10762647
    Abstract: A system and method of assisting a treatment procedure is provided, the method comprising the steps of determining a 3-D intervention vector in relation to an inner body structure of a body of interest based on a 3-D x-ray image, determining a 3-D position of an entry point on an outer surface of the body of interest based on the intervention vector, comparing the position and/or orientation of the inner body structure in the 3-D x-ray image with the position and/or orientation of the inner body structure in an additional 2-D x-ray image being generated transverse to the intervention vector, correcting the 3-D position of the entry point on the outer surface of the body of interest based on a deviation detected in the comparing step.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: September 1, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Christian Buerger, Michael Grass, Drazenko Babic
  • Patent number: 10719980
    Abstract: A method of analyzing a tube system in particular by image processing of images of the tube system is provided by the present invention. In order to achieve a simulation of a medium flow through a calculated tube model, the present invention gathers a tube model from a specific tube data set. By defining the necessary parameters of a virtual injection of the medium by the user, the medium flows through the model. Using this displayed simulation for generating at least two images leads to an artificial image sequence that might support a person, which wants to examine a real structure, that corresponds to the calculated model. This might be seen in.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: July 21, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Sabine Mollus, Joerg Bredno, Juergen Weese, Drazenko Babic
  • Patent number: 10610172
    Abstract: Imaging system (100) for enabling instrument guidance in an interventional procedure, comprising: —an input (130) for obtaining an interventional path (220) for use in the interventional procedure, the interventional path being planned based on 3D image data (200) of a patient's interior, and the interventional path being indicative of an entry point (230) on the patient's exterior; —a camera (124-127) for obtaining a camera image (270) of the patient's exterior during the interventional procedure; —a processor (140) for i) establishing a spatial correspondence between the camera image and the 3D image data, ii) based on the spatial correspondence, calculating a view (280) of the interventional path that corresponds with the camera image, and iii) combining the view of the interventional path with the camera image to obtain a composite image (290); and —a display output (150) for displaying the composite image on a display (162).
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: April 7, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Erik Hummel, Robert Johannes Frederik Homan, Drazenko Babic, Angelique Balguid