Patents by Inventor Drew D. Perkins

Drew D. Perkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7684399
    Abstract: An optical transmission network is inherently asynchronous due to the utilization of a variable overhead ratio (V-OHR). The network architecture makes extensive use of OEO regeneration, i.e., deals with any electronic reconditioning to correct for transmission impairments, such as, for example, FEC encoding, decoding and re-encoding, signal reshaping, retiming as well as signal regeneration. The optical transmission network includes a plesiochronous clocking system with intermediate nodes designed to operate asynchronously with a single local frequency clock without complicated network synchronization schemes employing high cost clocking devices such as phase locked loop (PLL) control with crystal oscillators and other expensive system components.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: March 23, 2010
    Assignee: Infinera Corporation
    Inventors: Drew D. Perkins, Ting-Kuang Chiang, Edward E. Sprague, Daniel P. Murphy
  • Patent number: 7680368
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: March 16, 2010
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Jr., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Drew D. Perkins
  • Publication number: 20090324220
    Abstract: Embodiments of the present invention route a wavelength division multiplexed signal across multiple communication paths using skew characteristics of at least some of the communication paths. The network is a wavelength division multiplexed optical transport network. The plurality of communication paths involves different signal and path attributes such as a plurality of carrier wavelengths, optical carrier groups, physical communication paths (different nodes, different fibers along a same path, or any combination of the foregoing), or any other differentiating factors between two paths.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Inventors: Drew D. Perkins, David F. Welch, Ting-Kuang Chiang, Charles H. Joyner, Edward E. Sprague, Parthiban Kandappan, Stephen Grubb, Prasad Paranjape
  • Patent number: 7636522
    Abstract: A coolerless photonic integrated circuit (PIC), such as a semiconductor electro-absorption modulator/laser (EML) or a coolerless optical transmitter photonic integrated circuit (TxPIC), may be operated over a wide temperature range at temperatures higher then room temperature without the need for ambient cooling or hermetic packaging. Since there is large scale integration of N optical transmission signal WDM channels on a TxPIC chip, a new DWDM system approach with novel sensing schemes and adaptive algorithms provides intelligent control of the PIC to optimize its performance and to allow optical transmitter and receiver modules in DWDM systems to operate uncooled. Moreover, the wavelength grid of the on-chip channel laser sources may thermally float within a WDM wavelength band where the individual emission wavelengths of the laser sources are not fixed to wavelength peaks along a standardized wavelength grid but rather may move about with changes in ambient temperature.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: December 22, 2009
    Assignee: Infinera Corporation
    Inventors: Radhakrishnan L. Nagarajan, Fred A. Kish, Jr., David F. Welch, Drew D. Perkins, Masaki Kato
  • Patent number: 7570671
    Abstract: An apparatus and method for uniformly sharing across a plurality of channel signals FEC coding gain which may be achieved through FEC encoding of a higher baud rate electrical data signal or through multiplexed or combined electrical data signals from multiple data sources prior to their subsequent demultiplexing and separate generation into optical channel signals which are multiplexed and launched onto an optical transmission medium. The optical signal generation is achieved through reverse multiplexing of the higher baud rate data signal or of the multiplexed, FEC encoded plural data signals.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: August 4, 2009
    Assignee: Infinera Corporation
    Inventors: Drew D. Perkins, Michael D. Jarchi, Satish K. Sridharan
  • Patent number: 7555220
    Abstract: An optical equalizer/dispersion compensator (E/CDC) comprises an input/output for receiving a multiplexed channel signal comprising a plurality of channel signals of different wavelengths. An optical amplifier may be coupled to receive, as an input/output, the multiplexed channel signals which amplifier may be a semiconductor optical amplifier (SOA) or a gain clamped-semiconductor optical amplifier (GC-SOA). A variable optical attenuator (VOA) is coupled to the optical amplifier and a chromatic dispersion compensator (CDC) is coupled to the variable optical attenuator. A mirror or Faraday rotator mirror (FRM) is coupled to the chromatic dispersion compensator to reflect the multiplexed channel signal back through these optical components The E/CDC components may be integrated in a photonic integrated circuit (PIC) chip.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: June 30, 2009
    Assignee: Infinera Corporation
    Inventors: Stephen G. Grubb, Charles H. Joyner, Frank H. Peters, Fred A. Kish, Jr., Drew D. Perkins
  • Publication number: 20090148170
    Abstract: Embodiments of the present invention provide systems, devices and methods for managing skew within a polarized multi-channel optical transport system. In a DP-QPSK system, skew between polarized channels is compensated within the transport system by adding latency to at least one of the polarized channels. The amount of added latency may depend on various factors including the skew tolerance of the transport system and the amount of skew across the channels without compensation. This latency may be added optically or electrically, and at various locations on a channel signal path within a transport node, such as a terminal transmitter or receiver. Additionally, various embodiments of the invention provide for novel methods of inserting frame alignment bit sequences within the transport frame overhead so that alignment and skew compensation may be more efficiently and accurately performed at the transport receiver.
    Type: Application
    Filed: December 7, 2007
    Publication date: June 11, 2009
    Inventor: Drew D. Perkins
  • Patent number: 7512295
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: March 31, 2009
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Jr., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Drew D. Perkins
  • Publication number: 20090052892
    Abstract: Embodiments of the present invention route a wavelength division multiplexed signal across multiple communication paths using skew characteristics of at least some of the communication paths. The network is a wavelength division multiplexed optical transport network. The plurality of communication paths involves different signal and path attributes such as a plurality of carrier wavelengths, optical carrier groups, physical communication paths (different nodes, different fibers along a same path, or any combination of the foregoing), or any other differentiating factors between two paths.
    Type: Application
    Filed: September 6, 2007
    Publication date: February 26, 2009
    Inventors: Drew D. Perkins, David F. Welch, Ting-Kuang Chiang, Edward E. Spragua, Parthiban Kandappan, Stephen G. Grubb, Prasad Paranjape
  • Publication number: 20090022452
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Application
    Filed: September 29, 2008
    Publication date: January 22, 2009
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, JR., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Drew D. Perkins
  • Patent number: 7477807
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: January 13, 2009
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Jr., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Drew D. Perkins
  • Publication number: 20080175589
    Abstract: Embodiments of the present invention determine skew relative to a plurality of communication paths on a network system. The network is a wavelength division multiplexed optical transport network. The plurality of communication paths involves different signal and path attributes such as a plurality of carrier wavelengths, optical carrier groups, physical communication paths (different nodes, different fibers along a same path, or any combination of the foregoing), or any other differentiating factors between two paths.
    Type: Application
    Filed: September 17, 2007
    Publication date: July 24, 2008
    Inventors: Drew D. Perkins, David F. Weich, Ting-Kuang Chiang, Edward E. Sprague, Parthiban Kandappan, Steven G. Grubb, Prasad Paranjape, Biao Lu
  • Publication number: 20080175586
    Abstract: Embodiments of the present invention compensate for skew across a wavelength division multiplexed network. The network is a wavelength division multiplexed optical transport network. The skew compensation can be performed electrically or optically. It can be performed on the transmission side of the network, the receiver side of the network or at any intermediary node on the network.
    Type: Application
    Filed: October 12, 2007
    Publication date: July 24, 2008
    Inventors: Drew D. Perkins, David F. Welch, Ting-Kuang Chiang, Edward E. Sprague, Parthiban Kandappan, Stephen G. Grubb, Prasad Paranjape
  • Publication number: 20080175590
    Abstract: Embodiments of the present invention route a WDM signal across multiple communication paths using skew characteristics of at least some of the communication paths. The network is an optical transport network, using either circuit or packet based switching, and wavelength division multiplexed wavelengths and/or optical carrier groups (“OCGs”) over a fiber link to another node in the network. The plurality of communication paths involves different signal and path attributes such as a plurality of carrier wavelengths, optical carrier groups, physical communication paths (different nodes, different fibers along a same path, or any combination of the foregoing), or any other differentiating factors between two paths.
    Type: Application
    Filed: July 23, 2007
    Publication date: July 24, 2008
    Inventors: Drew D. Perkins, David F. Welch, Ting-Kuang Chiang, Charles H. Joyner, Edward E. Sprague, Parthiban Kandappan, Stephen G. Grubb, Biao Lu, Prasad Paranjape
  • Publication number: 20080138088
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Application
    Filed: July 5, 2007
    Publication date: June 12, 2008
    Applicant: INFINERA CORPORATION
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Drew D. Perkins
  • Patent number: 7340122
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: March 4, 2008
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Jr., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Drew D. Perkins
  • Patent number: 7295783
    Abstract: A digital optical network (DON) is a new approach to low-cost, more compact optical transmitter modules and optical receiver modules for deployment in optical transport networks (OTNs). One important aspect of a digital optical network is the incorporation in these modules of transmitter photonic integrated circuit (TxPIC) chips and receiver photonic integrated circuit (RxPIC) chips in lieu of discrete modulated sources and detector sources with discrete multiplexers or demultiplexers.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: November 13, 2007
    Assignee: Infinera Corporation
    Inventors: Jagdeep Singh, Drew D. Perkins, David F. Welch, Mark Yin, Fred A. Kish, Jr., Stephen G. Grubb, Robert R. Taylor, Vincent G. Dominic, Matthew L. Mitchell, James R. Dodd, Jr.
  • Patent number: 7286487
    Abstract: An optical transmission network is inherently asynchronous due to the utilization of a variable overhead ratio (V-OHR). The network architecture makes extensive use of OEO regeneration, i.e., deals with any electronic reconditioning to correct for transmission impairments, such as, for example, FEC encoding, decoding and re-encoding, signal reshaping, retiming as well as signal regeneration. The optical transmission network includes a plesiochronous clocking system with intermediate nodes designed to operate asynchronously with a single local frequency clock without complicated network synchronization schemes employing high cost clocking devices such as phase locked loop (PLL) control with crystal oscillators and other expensive system components.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: October 23, 2007
    Assignee: Infinera Corporation
    Inventors: Drew D. Perkins, Ting-Kuang Chiang, Edward E. Sprague, Daniel P. Murphy
  • Patent number: 7283694
    Abstract: A photonic integrated circuit (PIC) chip comprising an array of modulated sources, each providing a modulated signal output at a channel wavelength different from the channel wavelength of other modulated sources and a wavelength selective combiner having an input optically coupled to received all the signal outputs from the modulated sources and provide a combined output signal on an output waveguide from the chip. The modulated sources, combiner and output waveguide are all integrated on the same chip.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: October 16, 2007
    Assignee: Infinera Corporation
    Inventors: David F. Welch, Vincent G. Dominic, Fred A. Kish, Jr., Mark J. Missey, Radhakrishnan L. Nagarajan, Atul Mathur, Frank H. Peters, Robert B. Taylor, Matthew L. Mitchell, Alan C. Nilsson, Stephen G. Grubb, Richard P. Schneider, Charles H. Joyner, Jonas Webjorn, Drew D. Perkins
  • Patent number: 7009934
    Abstract: A system and method for automatically generating a topology of a network having synchronous optical network (SONET) switches. Switches in the network pass information about itself to other switches in the network so that every switch can maintain a topology of the network. Using this knowledge of the network topology, each switch can generate a communication route within the network and automatically allot bandwidth for the route. Each switch may generate a new route in response to a line failure.
    Type: Grant
    Filed: March 1, 1999
    Date of Patent: March 7, 2006
    Assignee: Ciena Corporation
    Inventors: Drew D. Perkins, Theodore E. Tedijanto, Neeraj Gulati, Biao Lu