Patents by Inventor Drew Daniel Perkins
Drew Daniel Perkins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12213874Abstract: An electronic intraocular device is implantable into the capsular bag of a wearer's eye. In some cases, the intraocular device may include a femtoprojector. The femtoprojector projects images onto the wearer's retina when the electronic intraocular device is implanted in the wearer's eye. Different haptic designs may be used to keep the femtoprojector in position. In some embodiments, an imager is contained in a contact lens worn by the wearer. Images captured by the contact lens imager may be relayed to the intraocular femtoprojector. In some cases, the intraocular device may include an electronic capsular tension ring with a femtoimager. The femtoimager may capture images of the wearer's retina, for example for purposes of monitoring eye health.Type: GrantFiled: April 20, 2021Date of Patent: February 4, 2025Assignee: Tectus CorporationInventors: Michael West Wiemer, Morrison Ulman, Drew Daniel Perkins
-
Patent number: 12193928Abstract: An electronic intraocular device is implantable into the capsular bag of a wearer's eye. In some cases, the intraocular device may include a femtoprojector. The femtoprojector projects images onto the wearer's retina when the electronic intraocular device is implanted in the wearer's eye. Different haptic designs may be used to keep the femtoprojector in position. In some embodiments, an imager is contained in a contact lens worn by the wearer. Images captured by the contact lens imager may be relayed to the intraocular femtoprojector. In some cases, the intraocular device may include an electronic capsular tension ring with a femtoimager. The femtoimager may capture images of the wearer's retina, for example for purposes of monitoring eye health.Type: GrantFiled: April 20, 2021Date of Patent: January 14, 2025Assignee: Tectus CorporationInventors: Michael West Wiemer, Morrison Ulman, Drew Daniel Perkins
-
Patent number: 11624938Abstract: An unobtrusive augmented reality (AR) system can be used to assist the wearer in every day interactions by projecting information from the contact lens display onto the retina of the wearer's eye. The unobtrusive augmented reality system includes a necklace and a contact lens display that are unobtrusive to the wearer and the wearer's surrounding environment. The necklace of the unobtrusive augmented reality system generates power and data for the contact lens displays. The necklace and contact lens display include conductive coils inductively coupled by a magnetic field. The inductive coupling allows data and power generated by the necklace to be transferred to the contact lens display. A projector in the contact lens display projects images generated from the data onto the retina of the wearers eye.Type: GrantFiled: April 22, 2021Date of Patent: April 11, 2023Assignee: Tectus CorporationInventors: Gregory David Miller, Brian Elliot Lemoff, Kuang-mon Ashley Tuan, Herbert John Kniess, Ion Opris, Michael West Wiemer, Drew Daniel Perkins
-
Publication number: 20210290441Abstract: An electronic intraocular device is implantable into the capsular bag of a wearer's eye. In some cases, the intraocular device may include a femtoprojector. The femtoprojector projects images onto the wearer's retina when the electronic intraocular device is implanted in the wearer's eye. Different haptic designs may be used to keep the femtoprojector in position. In some embodiments, an imager is contained in a contact lens worn by the wearer. Images captured by the contact lens imager may be relayed to the intraocular femtoprojector. In some cases, the intraocular device may include an electronic capsular tension ring with a femtoimager. The femtoimager may capture images of the wearer's retina, for example for purposes of monitoring eye health.Type: ApplicationFiled: April 20, 2021Publication date: September 23, 2021Inventors: Michael West Wiemer, Morrison Ulman, Drew Daniel Perkins, Paul J. Soye, Dan Cohen
-
Publication number: 20210290440Abstract: An electronic intraocular device is implantable into the capsular bag of a wearer's eye. In some cases, the intraocular device may include a femtoprojector. The femtoprojector projects images onto the wearer's retina when the electronic intraocular device is implanted in the wearer's eye. Different haptic designs may be used to keep the femtoprojector in position. In some embodiments, an imager is contained in a contact lens worn by the wearer. Images captured by the contact lens imager may be relayed to the intraocular femtoprojector. In some cases, the intraocular device may include an electronic capsular tension ring with a femtoimager. The femtoimager may capture images of the wearer's retina, for example for purposes of monitoring eye health.Type: ApplicationFiled: April 20, 2021Publication date: September 23, 2021Inventors: Michael West Wiemer, Morrison Ulman, Drew Daniel Perkins
-
Publication number: 20210290367Abstract: An electronic intraocular device is implantable into the capsular bag of a wearer's eye. In some cases, the intraocular device may include a femtoprojector. The femtoprojector projects images onto the wearer's retina when the electronic intraocular device is implanted in the wearer's eye. Different haptic designs may be used to keep the femtoprojector in position. In some embodiments, an imager is contained in a contact lens worn by the wearer. Images captured by the contact lens imager may be relayed to the intraocular femtoprojector. In some cases, the intraocular device may include an electronic capsular tension ring with a femtoimager. The femtoimager may capture images of the wearer's retina, for example for purposes of monitoring eye health.Type: ApplicationFiled: April 20, 2021Publication date: September 23, 2021Inventors: Michael West Wiemer, Morrison Ulman, Drew Daniel Perkins
-
Publication number: 20210290368Abstract: An electronic intraocular device is implantable into the capsular bag of a wearer's eye. In some cases, the intraocular device may include a femtoprojector. The femtoprojector projects images onto the wearer's retina when the electronic intraocular device is implanted in the wearer's eye. Different haptic designs may be used to keep the femtoprojector in position. In some embodiments, an imager is contained in a contact lens worn by the wearer. Images captured by the contact lens imager may be relayed to the intraocular femtoprojector. In some cases, the intraocular device may include an electronic capsular tension ring with a femtoimager. The femtoimager may capture images of the wearer's retina, for example for purposes of monitoring eye health.Type: ApplicationFiled: April 20, 2021Publication date: September 23, 2021Inventors: Michael West Wiemer, Morrison Ulman, Drew Daniel Perkins
-
Publication number: 20210255483Abstract: An unobtrusive augmented reality (AR) system can be used to assist the wearer in every day interactions by projecting information from the contact lens display onto the retina of the wearer's eye. The unobtrusive augmented reality system includes a necklace and a contact lens display that are unobtrusive to the wearer and the wearer's surrounding environment. The necklace of the unobtrusive augmented reality system generates power and data for the contact lens displays. The necklace and contact lens display include conductive coils inductively coupled by a magnetic field. The inductive coupling allows data and power generated by the necklace to be transferred to the contact lens display. A projector in the contact lens display projects images generated from the data onto the retina of the wearers eye.Type: ApplicationFiled: April 22, 2021Publication date: August 19, 2021Inventors: Gregory David Miller, Brian Elliot Lemoff, Kuang-mon Ashley Tuan, Herbert John Kniess, Ion Opris, Michael West Wiemer, Drew Daniel Perkins
-
Patent number: 11029535Abstract: An unobtrusive augmented reality (AR) system can be used to assist the wearer in every day interactions by projecting information from the contact lens display onto the retina of the wearer's eye. The unobtrusive augmented reality system includes a necklace and a contact lens display that are unobtrusive to the wearer and the wearer's surrounding environment. The necklace of the unobtrusive augmented reality system generates power and data for the contact lens displays. The necklace and contact lens display include conductive coils inductively coupled by a magnetic field. The inductive coupling allows data and power generated by the necklace to be transferred to the contact lens display. A projector in the contact lens display projects images generated from the data onto the retina of the wearers eye.Type: GrantFiled: April 8, 2020Date of Patent: June 8, 2021Assignee: Tectus CorporationInventors: Gregory David Miller, Brian Elliot Lemoff, Kuang-mon Ashley Tuan, Herbert John Kniess, Ion Opris, Michael West Wiemer, Drew Daniel Perkins
-
Patent number: 10831269Abstract: A system controls a brightness of an augmented reality (AR) eye-mounted device. The system includes an eye-mounted display, a photodetector system, and a controller. The eye-mounted display includes a contact lens and a femtoprojector. The femtoprojector is contained in the contact lens and is configured to project an AR image to a user's retina. The AR image is overlaid on an external scene viewed by the user through the contact lens. The photodetector system detects a brightness level of the external scene. Based on the brightness level of the external scene, the controller adjusts a brightness level of the AR image projected to the user's retina. In some embodiments, the eye-mounted display receives image data defining the AR image and the controller adjusts a bit depth of the image data based on the brightness level of the AR image.Type: GrantFiled: September 6, 2019Date of Patent: November 10, 2020Assignee: Tectus CorporationInventors: Brian Elliot Lemoff, Michael West Wiemer, Paul Scott Martin, Hansong Zhang, Drew Daniel Perkins
-
Publication number: 20200241323Abstract: An unobtrusive augmented reality (AR) system can be used to assist the wearer in every day interactions by projecting information from the contact lens display onto the retina of the wearer's eye. The unobtrusive augmented reality system includes a necklace and a contact lens display that are unobtrusive to the wearer and the wearer's surrounding environment. The necklace of the unobtrusive augmented reality system generates power and data for the contact lens displays. The necklace and contact lens display include conductive coils inductively coupled by a magnetic field. The inductive coupling allows data and power generated by the necklace to be transferred to the contact lens display. A projector in the contact lens display projects images generated from the data onto the retina of the wearers eye.Type: ApplicationFiled: April 8, 2020Publication date: July 30, 2020Inventors: Gregory David Miller, Brian Elliot Lemoff, Kuang-mon Ashley Tuan, Herbert John Kniess, Ion Opris, Michael West Wiemer, Drew Daniel Perkins
-
Patent number: 10649233Abstract: An unobtrusive augmented reality (AR) system can be used to assist the wearer in every day interactions by projecting information from the contact lens display onto the retina of the wearer's eye. The unobtrusive augmented reality system includes a necklace and a contact lens display that are unobtrusive to the wearer and the wearer's surrounding environment. The necklace of the unobtrusive augmented reality system generates power and data for the contact lens displays. The necklace and contact lens display include conductive coils inductively coupled by a magnetic field. The inductive coupling allows data and power generated by the necklace to be transferred to the contact lens display. A projector in the contact lens display projects images generated from the data onto the retina of the wearers eye.Type: GrantFiled: November 27, 2017Date of Patent: May 12, 2020Assignee: Tectus CorporationInventors: Gregory David Miller, Brian Elliot Lemoff, Kuang-mon Ashley Tuan, Herbert John Kniess, Ion Opris, Michael West Wiemer, Drew Daniel Perkins
-
Publication number: 20200004330Abstract: A system controls a brightness of an augmented reality (AR) eye-mounted device. The system includes an eye-mounted display, a photodetector system, and a controller. The eye-mounted display includes a contact lens and a femtoprojector. The femtoprojector is contained in the contact lens and is configured to project an AR image to a user's retina. The AR image is overlaid on an external scene viewed by the user through the contact lens. The photodetector system detects a brightness level of the external scene. Based on the brightness level of the external scene, the controller adjusts a brightness level of the AR image projected to the user's retina. In some embodiments, the eye-mounted display receives image data defining the AR image and the controller adjusts a bit depth of the image data based on the brightness level of the AR image.Type: ApplicationFiled: September 6, 2019Publication date: January 2, 2020Inventors: Brian Elliot Lemoff, Michael West Wiemer, Paul Scott Martin, Hansong Zhang, Drew Daniel Perkins
-
Patent number: 10474230Abstract: A system controls a brightness of an augmented reality (AR) eye-mounted device. The system includes an eye-mounted display, a photodetector system, and a controller. The eye-mounted display includes a contact lens and a femtoprojector. The femtoprojector is contained in the contact lens and is configured to project an AR image to a user's retina. The AR image is overlaid on an external scene viewed by the user through the contact lens. The photodetector system detects a brightness level of the external scene. Based on the brightness level of the external scene, the controller adjusts a brightness level of the AR image projected to the user's retina. In some embodiments, the eye-mounted display receives image data defining the AR image and the controller adjusts a bit depth of the image data based on the brightness level of the AR image.Type: GrantFiled: December 12, 2017Date of Patent: November 12, 2019Assignee: Tectus CorporationInventors: Brian Elliot Lemoff, Michael West Wiemer, Paul Scott Martin, Hansong Zhang, Drew Daniel Perkins
-
Publication number: 20180173304Abstract: A system controls a brightness of an augmented reality (AR) eye-mounted device. The system includes an eye-mounted display, a photodetector system, and a controller. The eye-mounted display includes a contact lens and a femtoprojector. The femtoprojector is contained in the contact lens and is configured to project an AR image to a user's retina. The AR image is overlaid on an external scene viewed by the user through the contact lens. The photodetector system detects a brightness level of the external scene. Based on the brightness level of the external scene, the controller adjusts a brightness level of the AR image projected to the user's retina. In some embodiments, the eye-mounted display receives image data defining the AR image and the controller adjusts a bit depth of the image data based on the brightness level of the AR image.Type: ApplicationFiled: December 12, 2017Publication date: June 21, 2018Inventors: Brian Elliot Lemoff, Michael West Wiemer, Paul Scott Martin, Hansong Zhang, Drew Daniel Perkins
-
Publication number: 20180149884Abstract: An unobtrusive augmented reality (AR) system can be used to assist the wearer in every day interactions by projecting information from the contact lens display onto the retina of the wearer's eye. The unobtrusive augmented reality system includes a necklace and a contact lens display that are unobtrusive to the wearer and the wearer's surrounding environment. The necklace of the unobtrusive augmented reality system generates power and data for the contact lens displays. The necklace and contact lens display include conductive coils inductively coupled by a magnetic field. The inductive coupling allows data and power generated by the necklace to be transferred to the contact lens display. A projector in the contact lens display projects images generated from the data onto the retina of the wearers eye.Type: ApplicationFiled: November 27, 2017Publication date: May 31, 2018Inventors: Gregory David Miller, Brian Elliot Lemoff, Kuang-mon Ashley Tuan, Herbert John Kniess, Ion Opris, Michael West Wiemer, Drew Daniel Perkins