Patents by Inventor Drew Spradling

Drew Spradling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050196481
    Abstract: Self-heated tools for the production of composite parts are described. The tools include a tool body which, at least in part, includes carbon foam materials that are electrically conductive or permeable to the passage of fluids. These materials can be both electrically conductive and permeable to the passage of fluids. The electrically conductive or fluid permeable carbon foam materials are an intrinsic part of the construction of these tool bodies and are not add-on devices. Electricity may be used to heat the electrically conductive carbon foam material and transfer heat to the tool face. In other embodiments, heated fluid may be passed through and used to heat the fluid permeable carbon foam material and transfer heat to tool body. The electrically conductive or permeable carbon foam materials may define the tool face of the tool body. The tool bodies may comprise carbon foam, which is both electrically conductive and permeable.
    Type: Application
    Filed: March 4, 2005
    Publication date: September 8, 2005
    Inventors: Drew Spradling, Douglas Merriman, Thomas Matviya, Rick Lucas
  • Publication number: 20050085372
    Abstract: A process for the production of an open-cell carbon foam from a metallic salt of a lignosulfonate is described. The process includes heating the metallic salt of a lignosulfonate from ambient temperature to a maximum temperature, greater than about 250° C., at a rate sufficiently slow as to provide for essentially uniform heating of the lignin derived material. Heating of the lignin derived material is performed in a non-oxidizing atmosphere having a pressure greater than about 100 psig. The resultant carbon foam can subsequently be optionally subjected to carbonization or graphitization temperatures as desired. The resultant carbon foam has a regular open-cell structure. Densities of the carbon foam products are commonly in the range of about 0.1 g/cm3 to 0.2 g/cm3. The carbon foams may also exhibit compressive strengths of up to about 200 psi. The carbon foam materials potentially have utility as lightweight thermal barriers and in many other of the applications associated with carbon foams.
    Type: Application
    Filed: August 3, 2004
    Publication date: April 21, 2005
    Inventors: Drew Spradling, Doug Amie