Patents by Inventor Dror Lazar

Dror Lazar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230367725
    Abstract: Techniques and mechanisms for determining a reference voltage which is to be provided with an integrated circuit (IC) die. In an embodiment, the IC die comprises a resistor, and a hardware interface which accommodates coupling of the IC die to a test unit. The test unit provides functionality to perform an evaluation of a resistance of the resistor, wherein said resistance is indicative of the respective resistances of one or more other resistors of the IC die. Based on the evaluation, the test unit provides to the IC die an indication of a scale factor, wherein the reference voltage is generated based on the scale factor. In another embodiment, the IC die further comprises an amplifier circuit which receives the reference voltage, wherein a variable resistance circuit of the IC die is configured based on an output of the amplifier circuit.
    Type: Application
    Filed: May 12, 2022
    Publication date: November 16, 2023
    Applicant: Intel Corporation
    Inventors: Vijayalakshmi Ramachandran, Mingming Xu, Dror Lazar
  • Patent number: 10944411
    Abstract: Described is an apparatus comprising a first circuitry, a second circuitry, a first capacitor array, and a second capacitor array. The first circuitry may have an oscillator. The first capacitor array may have a set of first capacitors to tune the oscillator. The second capacitor array may have a second capacitor to tune the oscillator. A capacitance of the second capacitor may be greater than an average capacitance of the first capacitors. The second circuitry may be operable to synchronously activate the second capacitor and deactivate a number N of the first capacitors, and to synchronously deactivate the second capacitor and activate the N first capacitors, based on a predetermined sequence.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: March 9, 2021
    Assignee: Intel Corporation
    Inventors: Mark Elzinga, Youngmin Park, Michael Bichan, Michael W. Altmann, Noam Familia, Vadim Levin, Dror Lazar
  • Patent number: 10855305
    Abstract: A comparator is described. The comparator includes a differential pair having first and second transistors to respectively receive first and second input signals. The comparator also includes a current sink or source transistor coupled to respective source nodes of the first and second transistors. The current sink or source transistor is coupled to receive a fixed bias to keep the current sink transistor active so that large voltage changes on the source nodes is avoided. The comparator circuit includes a latch circuit coupled to respective drain nodes of the first and second transistors. The latch circuit is to reach a final state to present the comparator's output signal. The comparator includes a first switch circuit coupled between the first transistor's drain node and the latch circuit, and a second switch circuit coupled between the second transistor's drain node and the latch circuit.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: December 1, 2020
    Assignee: Intel Corporation
    Inventors: Roee Eitan, Ahmad B. Khairi, Yosi Sanhedrai, Ram Livne, Ilya Kraimer, Hen Sallem, Idan Lotan, Ariel Cohen, Dror Lazar
  • Publication number: 20190238150
    Abstract: A comparator is described. The comparator includes a differential pair having first and second transistors to respectively receive first and second input signals. The comparator also includes a current sink or source transistor coupled to respective source nodes of the first and second transistors. The current sink or source transistor is coupled to receive a fixed bias to keep the current sink transistor active so that large voltage changes on the source nodes is avoided. The comparator circuit includes a latch circuit coupled to respective drain nodes of the first and second transistors. The latch circuit is to reach a final state to present the comparator's output signal. The comparator includes a first switch circuit coupled between the first transistor's drain node and the latch circuit, and a second switch circuit coupled between the second transistor's drain node and the latch circuit.
    Type: Application
    Filed: April 4, 2019
    Publication date: August 1, 2019
    Inventors: Roee EITAN, Ahmad B. KHAIRI, Yosi SANHEDRAI, Ram LIVNE, Ilya KRAIMER, Hen SALLEM, Idan LOTAN, Ariel COHEN, Dror LAZAR
  • Patent number: 9973356
    Abstract: One embodiment provides an enhanced slicer. The enhanced slicer includes a first clocked comparator circuitry and a current path circuitry. The first clocked comparator circuitry includes a first comparator circuitry, a first latch circuitry, a first output node (Out_P) and a second output node (Out_N). The current path circuitry is coupled to the output nodes and a reference node. The current path circuitry is to enhance current flow between at least one of the output nodes and the reference node, in response to a clock signal.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: May 15, 2018
    Assignee: Intel Corporation
    Inventors: Ram Livne, Ro'ee Eitan, Yoel Krupnik, Vladislav Tsirkin, Tomer Fael, Dror Lazar, Ariel Cohen, Alexander Pogrebinsky, Adee Ofir Ran
  • Patent number: 9568530
    Abstract: Embodiments of the present disclosure provide configurations for testing arrangements for testing multi-lane active cables. In one embodiment, a testing arrangement may comprise a testing module comprising a pattern generator to be coupled with an active cable having a plurality of lanes to generate a test pattern to be transmitted over the active cable, wherein the test pattern is to be transmitted at least over two or more lanes of the active cable that are concatenated, and a processing unit to be coupled with the active cable to process a result of the transmission of the test pattern over the active cable. The arrangement may further include a plurality of testing cables to concatenate two or more of the lanes of the active cable, to enable the transmission of the test pattern over the concatenated lanes of the active cable. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: February 14, 2017
    Assignee: INTEL CORPORATION
    Inventors: Ehud Udi Shoor, Dror Lazar, Adee O. Ran
  • Publication number: 20160124034
    Abstract: Embodiments of the present disclosure provide configurations for testing arrangements for testing multi-lane active cables. In one embodiment, a testing arrangement may comprise a testing module comprising a pattern generator to be coupled with an active cable having a plurality of lanes to generate a test pattern to be transmitted over the active cable, wherein the test pattern is to be transmitted at least over two or more lanes of the active cable that are concatenated, and a processing unit to be coupled with the active cable to process a result of the transmission of the test pattern over the active cable. The arrangement may further include a plurality of testing cables to concatenate two or more of the lanes of the active cable, to enable the transmission of the test pattern over the concatenated lanes of the active cable. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: October 29, 2014
    Publication date: May 5, 2016
    Inventors: Ehud Udi Shoor, Dror Lazar, Adee O. Ran
  • Patent number: 8989588
    Abstract: An optical transceiver includes an optical IC coupled to a processor IC. For transmit, the optical IC can be understood as a transmitter IC including a laser device or array. For receive, the optical IC can be understood as a receiver IC including a photodetector/photodiode device or array. For a transmitter IC, the processor IC includes a driver for a laser of the transmitter IC. The driver includes an equalizer that applies high frequency gain to a signal transmitted with the laser device. For a receiver IC, the processor IC includes a front end circuit to interface with a photodetector of the receiver IC. The front end circuit includes an equalizer that applies high frequency gain to a signal received by the receiver IC. The driver can be configurable to receive a laser having either orientation: ground termination or supply termination.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: March 24, 2015
    Assignee: Intel Corporation
    Inventors: Gil Afriat, Lior Horwitz, Dror Lazar, Assaf Issachar, Alexander Pogrebinsky, Adee O. Ran, Ehud Shoor, Roi Bar, Rushdy A. Saba
  • Patent number: 8711018
    Abstract: In one embodiment, the present invention includes a de-serializer to receive serial data at a first rate and to output a parallel data frame corresponding to the serial data aligned to a frame alignment boundary in response to a phase control signal received from a feedback loop coupled between the de-serializer and a receiver logic coupled to an output of the de-serializer. Other embodiments are described and claimed.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: April 29, 2014
    Assignee: Intel Corporation
    Inventors: Ehud Shoor, Dror Lazar, Assaf Benhamou
  • Publication number: 20130241751
    Abstract: In one embodiment, the present invention includes a de-serializer to receive serial data at a first rate and to output a parallel data frame corresponding to the serial data aligned to a frame alignment boundary in response to a phase control signal received from a feedback loop coupled between the de-serializer and a receiver logic coupled to an output of the de-serializer. Other embodiments are described and claimed.
    Type: Application
    Filed: February 28, 2013
    Publication date: September 19, 2013
    Inventors: Ehud SHOOR, Dror LAZAR, Assaf BENHAMOU
  • Publication number: 20130188965
    Abstract: An optical transceiver includes an optical IC coupled to a processor IC. For transmit, the optical IC can be understood as a transmitter IC including a laser device or array. For receive, the optical IC can be understood as a receiver IC including a photodetector/photodiode device or array. For a transmitter IC, the processor IC includes a driver for a laser of the transmitter IC. The driver includes an equalizer that applies high frequency gain to a signal transmitted with the laser device. For a receiver IC, the processor IC includes a front end circuit to interface with a photodetector of the receiver IC. The front end circuit includes an equalizer that applies high frequency gain to a signal received by the receiver IC. The driver can be configurable to receive a laser having either orientation: ground termination or supply termination.
    Type: Application
    Filed: January 22, 2013
    Publication date: July 25, 2013
    Inventors: Gil AFRIAT, Lior HORWITZ, Dror LAZAR, Assaf ISSACHAR, Alexander POGREBINSKY, Adee O. RAN, Ehud SHOOR, Roi BAR, Rushdy A. SABA
  • Publication number: 20130188963
    Abstract: An optical transceiver includes an optical receiver IC coupled to a processor IC. The processor IC includes an integrated optical receiver front end circuit, and includes an integrated inductor to control the LC frequency response of a signal from the optical receiver IC to the output of the front end circuit. The inductor is coupled in series between interface components of the processor IC and an input of the front end circuit. The inductor is configured to adjust an effective input reactance of the front end circuit, which operates to control the LC frequency response of a signal from the optical receiver IC to an output of the front end circuit.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 25, 2013
    Inventors: GIL AFRIAT, LIOR HORWITZ, DROR LAZAR, ASSAF ISSACHAR, ALEXANDER POGREBINSKY, ADEE O. RAN, EHUD SHOOR, ROI BAR, RUSHDY A. SABA
  • Patent number: 8405533
    Abstract: In one embodiment, the present invention includes a de-serializer to receive serial data at a first rate and to output a parallel data frame corresponding to the serial data aligned to a frame alignment boundary in response to a phase control signal received from a feedback loop coupled between the de-serializer and a receiver logic coupled to an output of the de-serializer. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: March 26, 2013
    Assignee: Intel Corporation
    Inventors: Ehud Shoor, Dror Lazar, Assaf Benhamou
  • Patent number: 8314724
    Abstract: In one embodiment, the present invention includes a de-serializer to receive serial data at a first rate and to output a parallel data frame corresponding to the serial data aligned to a frame alignment boundary in response to a phase control signal received from a feedback loop coupled between the de-serializer and a receiver logic coupled to an output of the de-serializer. Other embodiments are described and claimed.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: November 20, 2012
    Assignee: Intel Corporation
    Inventors: Ehud Shoor, Dror Lazar, Assaf Benhamou
  • Publication number: 20120154185
    Abstract: In one embodiment, the present invention includes a de-serializer to receive serial data at a first rate and to output a parallel data frame corresponding to the serial data aligned to a frame alignment boundary in response to a phase control signal received from a feedback loop coupled between the de-serializer and a receiver logic coupled to an output of the de-serializer. Other embodiments are described and claimed.
    Type: Application
    Filed: December 15, 2010
    Publication date: June 21, 2012
    Inventors: Ehud Shoor, Dror Lazar, Assaf Benhamou