Patents by Inventor Duane D. Scott

Duane D. Scott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957893
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C M Pape, Gabriela C. Molnar, Joel A. Anderson, Michael J. Ebert, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
  • Patent number: 11957894
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Patent number: 9314854
    Abstract: A method of drilling holes comprises ductile mode drilling the holes in a component of a plasma processing apparatus with a cutting tool wherein the component is made of a nonmetallic hard and brittle material. The method comprises drilling each hole in the component by controlling a depth of cut while drilling such that a portion of the brittle material undergoes high pressure phase transformation and forms amorphous portions of the brittle material during chip formation. The amorphous portions of the brittle material are removed from each hole such that a wall of each hole formed in the component has an as drilled surface roughness (Ra) of about 0.2 to 0.8 ?m.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: April 19, 2016
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Lihua Li Huang, Duane D. Scott, Joseph P. Doench, Jamie Burns, Emily P. Stenta, Gregory R. Bettencourt, John E. Daugherty
  • Publication number: 20140213061
    Abstract: A method of drilling holes comprises ductile mode drilling the holes in a component of a plasma processing apparatus with a cutting tool wherein the component is made of a nonmetallic hard and brittle material. The method comprises drilling each hole in the component by controlling a depth of cut while drilling such that a portion of the brittle material undergoes high pressure phase transformation and forms amorphous portions of the brittle material during chip formation. The amorphous portions of the brittle material are removed from each hole such that a wall of each hole formed in the component has an as drilled surface roughness (Ra) of about 0.2 to 0.8 ?m.
    Type: Application
    Filed: January 30, 2013
    Publication date: July 31, 2014
    Applicant: LAM RESEARCH CORPORATION
    Inventors: Lihua Li Huang, Duane D. Scott, Joseph P. Doench, Jamie Burns, Emily P. Stenta, Gregory R. Bettencourt, John E. Daugherty