Patents by Inventor Duane N. Mateychuk

Duane N. Mateychuk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11975206
    Abstract: An implantable medical device (IMD) comprises a plurality of deep tines configured to be advanced into a septum of a heart of a patient in different directions that are not parallel to a longitudinal axis of the implantable medical device, wherein each deep tine of the plurality of deep tines is configured to deliver cardiac pacing to cardiac tissue distal to a chamber of the heart in which the IMD is implanted, and one or more shallow electrodes engageable with the septum, wherein the one or more shallow electrodes are configured to deliver cardiac pacing to the chamber of the heart in which the IMD is implanted.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: May 7, 2024
    Assignee: Medtronic, Inc.
    Inventors: Kaileigh E. Rock, Michael D. Eggen, Jean M. Carver, Duane N. Mateychuk, Zhongping C. Yang, Douglas S. Hine, Scott J. Brabec, Vania Lee
  • Publication number: 20210275824
    Abstract: An implantable medical device (IMD) comprises a plurality of deep tines configured to be advanced into a septum of a heart of a patient in different directions that are not parallel to a longitudinal axis of the implantable medical device, wherein each deep tine of the plurality of deep tines is configured to deliver cardiac pacing to cardiac tissue distal to a chamber of the heart in which the IMD is implanted, and one or more shallow electrodes engageable with the septum, wherein the one or more shallow electrodes are configured to deliver cardiac pacing to the chamber of the heart in which the IMD is implanted.
    Type: Application
    Filed: March 3, 2021
    Publication date: September 9, 2021
    Inventors: Kaileigh E. Rock, Michael D. Eggen, Jean M. Carver, Duane N. Mateychuk, Zhongping C. Yang, Douglas S. Hine, Scott J. Brabec, Vania Lee
  • Patent number: 8497804
    Abstract: An antenna structure for an implantable medical device (IMD) is provided including a lower dielectric biocompatible antenna portion positioned on a body side of the structure and a high dielectric portion including at least one dielectric substrate having a high dielectric constant positioned on a device side of the structure. The biocompatible antenna portion is derived from an antenna layer, a biocompatible surface layer, and at least one layer of biocompatible dielectric material (e.g., high temperature cofire ceramic (HTCC) material) that provides a matching gradient between the antenna and the surrounding environment. The high dielectric portion may include at least one layer of low temperature cofire ceramic (LTCC) material. The high dielectric portion may be bonded to the biocompatible antenna portion or cofired with the biocompatible antenna portion to form a single bilayer monolithic antenna structure having a lower dielectric HTCC biocompatible antenna portion and a high dielectric LTCC portion.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: July 30, 2013
    Assignee: Medtronic, Inc.
    Inventors: Gregory J. Haubrich, Joyce K. Yamamoto, Duane N. Mateychuk
  • Patent number: 8219204
    Abstract: A telemetry antenna for an implantable medical device includes one or more segments having a non-linear configuration. In some embodiments, the non-linear configuration provides an antenna having a greater antenna length than the linear lengthwise dimension of the antenna structure. In some embodiments, the non-linear configuration includes a plurality of trapezoidal unit structures.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: July 10, 2012
    Assignee: Medtronic, Inc.
    Inventor: Duane N. Mateychuk
  • Publication number: 20100109958
    Abstract: An antenna structure for an implantable medical device (IMD) is provided including a lower dielectric biocompatible antenna portion positioned on a body side of the structure and a high dielectric portion including at least one dielectric substrate having a high dielectric constant positioned on a device side of the structure. The biocompatible antenna portion is derived from an antenna layer, a biocompatible surface layer, and at least one layer of biocompatible dielectric material (e.g., high temperature cofire ceramic (HTCC) material) that provides a matching gradient between the antenna and the surrounding environment. The high dielectric portion may include at least one layer of low temperature cofire ceramic (LTCC) material. The high dielectric portion may be bonded to the biocompatible antenna portion or cofired with the biocompatible antenna portion to form a single bilayer monolithic antenna structure having a lower dielectric HTCC biocompatible antenna portion and a high dielectric LTCC portion.
    Type: Application
    Filed: December 31, 2008
    Publication date: May 6, 2010
    Inventors: Gregory J. Haubrich, Joyce K. Yamamoto, Duane N. Mateychuk
  • Publication number: 20100109966
    Abstract: An antenna for an implantable medical device (IMD) is provided including a monolithic structure derived from a plurality of discrete dielectric layers having an antenna embedded within the monolithic structure. Superstrate dielectric layers formed above the antenna may provide improved matching gradient with the surrounding environment to mitigate energy reflection effects. A outermost biocompatible layer is positioned over the superstrates as an interface with the surrounding environment. A shielding layer is positioned under the antenna to provide electromagnetic shielding for the IMD circuitry. Substrate dielectric layers formed below the antenna may possess higher dielectric values to allow the distance between the antenna and ground shielding layer to be minimized. An electromagnetic bandgap layer may be positioned between the antenna and the shielding layer.
    Type: Application
    Filed: December 31, 2008
    Publication date: May 6, 2010
    Inventors: Duane N. Mateychuk, Joyce K. Yamamoto, Gerard J. Hill, Charles S. Farlow, Robert S. Wentink, Michael William Barror, Charles R. Gordon, Joachim Hossick-Schott, Yanzhu Zhao
  • Publication number: 20100082080
    Abstract: A telemetry antenna for an implantable medical device includes one or more segments having a non-linear configuration. In some embodiments, the non-linear configuration provides an antenna having a greater antenna length than the linear lengthwise dimension of the antenna structure. In some embodiments, the non-linear configuration includes a plurality of trapezoidal unit structures.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Inventor: Duane N. Mateychuk
  • Publication number: 20090102723
    Abstract: A dual moded stacked microstrip patch antenna includes an integrated first lower antenna element having probes excited at a higher transverse magnetic order mode and a second upper antenna element with probes excited at a lower order transverse magnetic mode. Distinct probe locations and phase offset signals are supplied to each of the probes in each of the first and second antenna elements to support the higher and lower order mode of operation.
    Type: Application
    Filed: October 18, 2007
    Publication date: April 23, 2009
    Inventors: Duane N. Mateychuk, John Z. Lu
  • Patent number: 7474264
    Abstract: A system and method are provided for detecting use of RF transmit devices (e.g., cellular phones) in a vehicle. The system includes a first RF antenna for detecting signal strength of an RF signals transmit device at a first location in a vehicle and a power first detector for generating a first output signal indicative thereof. The system also includes a second antenna for detecting signal strength of the RF signals at a second location in the vehicle and a second power detector for generating a second output signal indicative thereof. The system further includes a signal processor for processing the first and second output signals to determine the presence of an RF transmit device in use in the vehicle and to further determine the location of the RF transmit device to determine if a driver is using the device.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: January 6, 2009
    Assignee: Delphi Technologies, Inc.
    Inventors: Timothy D. Bolduc, Mark A. Pollard, Gregory K. Scharenbroch, Matthew R. Smith, Gerald J. Witt, Duane N. Mateychuk, Joseph E. Harter, Jr.