Patents by Inventor Duane T. Smith

Duane T. Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957893
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C M Pape, Gabriela C. Molnar, Joel A. Anderson, Michael J. Ebert, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
  • Patent number: 11957894
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Patent number: 7821250
    Abstract: A clamp assembly for bringing an RF sensor into electrical contact with an RF current carrier is provided herein. The clamp assembly (101) comprises a first wedge-shaped element (103), and a second wedge-shaped element (105) which is slidingly engaged with said first wedge-shaped element. Preferably, the clamp assembly also comprises a collar (113) within which the first and second wedge-shaped elements are disposed. The clamp assembly preferably further comprises a fastener (111), such as a screw, which adjoins the first and second elements, in which case the clamp assembly is adapted such that, as the screw is rotated in a first direction, at least one of the first and second elements expands against the collar and/or the RF current carrier.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: October 26, 2010
    Assignee: Inficon, Inc.
    Inventors: Terry A. Turner, Rodney A. Herman, Duane T. Smith, James D. Spain
  • Patent number: 7728250
    Abstract: A clamp assembly for bringing an RF sensor into electrical contact with an RF current carrier is provided herein. The clamp assembly (101) comprises a first wedge-shaped element (103), and a second wedge-shaped element (105) which is slidingly engaged with said first wedge-shaped element. Preferably, the clamp assembly also comprises a collar (113) within which the first and second wedge-shaped elements are disposed. The clamp assembly preferably further comprises a fastener (111), such as a screw, which adjoins the first and second elements, in which case the clamp assembly is adapted such that, as the screw is rotated in a first direction, at least one of the first and second elements expands against the collar and/or the RF current carrier.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: June 1, 2010
    Assignee: Inficon, Inc.
    Inventors: Terry R. Turner, Rodney A. Herman, Duane T. Smith, James D. Spain
  • Publication number: 20080024158
    Abstract: A clamp assembly for bringing an RF sensor into electrical contact with an RF current carrier is provided herein. The clamp assembly (101) comprises a first wedge-shaped element (103), and a second wedge-shaped element (105) which is slidingly engaged with said first wedge-shaped element. Preferably, the clamp assembly also comprises a collar (113) within which the first and second wedge-shaped elements are disposed. The clamp assembly preferably further comprises a fastener (111), such as a screw, which adjoins the first and second elements, in which case the clamp assembly is adapted such that, as the screw is rotated in a first direction, at least one of the first and second elements expands against the collar and/or the RF current carrier.
    Type: Application
    Filed: July 31, 2006
    Publication date: January 31, 2008
    Inventors: Terry A. Turner, Rodney A. Herman, Duane T. Smith, James D. Spain
  • Patent number: 7076144
    Abstract: A bend radius control member for controlling the bend radius of an optical fiber cable including a deformation resistant heat shrunk outer jacket wrapped around the optical fiber cable. The heat shrunk outer jacket has a desired bend radius curvature.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: July 11, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Harry A. Loder, Duane T. Smith
  • Patent number: 6911770
    Abstract: A cap can comprise an aperture, and an attenuator may block the aperture during at least one point in time. In one embodiment, the attenuator can include a cover that may be displaced by a spring. In another embodiment, such as an electron gun, may comprise a support cap with an aperture, a displaceable cover that may cover the aperture, and a spring. A material attached to the spring and acting as a fuse may release the spring and expose the aperture after an electrical current blows the “fuse”. In yet another embodiment, a method for using a tube may comprise evacuating the tube while a cover covers an aperture in the support cap of a electron gun that is at least partially in the tube and moving the cover to expose the aperture after the tube is sealed.
    Type: Grant
    Filed: February 1, 2002
    Date of Patent: June 28, 2005
    Assignee: Trepton Research Group, Inc.
    Inventors: Randolph D. Schueller, Duane T. Smith
  • Patent number: 6789950
    Abstract: A fiber optic connector system for connecting at least one optical fiber cable mounted near the edge of a planar substrate to a backplane, each optical fiber cable including a plurality of optical fibers and a terminating ferrule, the longitudinal orientation of the optical fibers within the terminating ferrule defining a longitudinal axis and a forward direction, the ferrule having a first longitudinal range of motion x1 and a ferrule spring element having a longitudinal ferrule spring force fn,. The optical connector system includes a substrate housing assembly and a backplane housing assembly. The substrate housing assembly is designed to be mounted on the planar substrate and includes at least one ferrule receiving cavity for receiving the optical fiber ferrule, and a substrate housing assembly spring.
    Type: Grant
    Filed: August 22, 2000
    Date of Patent: September 14, 2004
    Assignee: 3M Innovative Properties Company
    Inventors: Harry A. Loder, Duane T. Smith
  • Publication number: 20030146686
    Abstract: A cap can comprise an aperture, and an attenuator may block the aperture during at least one point in time. In one embodiment, the attenuator can include a cover that may be displaced by a spring. In another embodiment, an electron gun, such as an electron gun, may comprise a support cap with an aperture, a displaceable cover that may cover the aperture, and a spring. A material attached to the spring and acting as a fuse may release the spring and expose the aperture after an electrical current blows the “fuse.” In yet another embodiment, a method for using a tube may comprise evacuating the tube while a cover covers an aperture in the support cap of a electron gun that is at least partially in the tube and moving the cover to expose the aperture after the tube is sealed.
    Type: Application
    Filed: February 1, 2002
    Publication date: August 7, 2003
    Applicant: Extreme Devices, Inc.
    Inventors: Randolph D. Schueller, Duane T. Smith
  • Publication number: 20020106162
    Abstract: A fiber optic connector system for connecting at least one optical fiber cable mounted near the edge of a planar substrate to a backplane, each optical fiber cable including a plurality of optical fibers and a terminating ferrule, the longitudinal orientation of the optical fibers within the terminating ferrule defining a longitudinal axis and a forward direction, the ferrule having a first longitudinal range of motion x1 and a ferrule spring element having a longitudinal ferrule spring force fn,. The optical connector system includes a substrate housing assembly and a backplane housing assembly. The substrate housing assembly is designed to be mounted on the planar substrate and includes at least one ferrule receiving cavity for receiving the optical fiber ferrule, and a substrate housing assembly spring.
    Type: Application
    Filed: November 5, 2001
    Publication date: August 8, 2002
    Applicant: 3M Innovative Properties Company
    Inventors: Harry A. Loder, Duane T. Smith
  • Patent number: 6419399
    Abstract: A fiber optic connector system for connecting at least one optical fiber cable mounted near the edge of a planar substrate to a backplane, each optical fiber cable including a plurality of optical fibers and a terminating ferrule, the longitudinal orientation of the optical fibers within the terminating ferrule defining a longitudinal axis and a forward direction, the ferrule having a first longitudinal range of motion x1 and a ferrule spring element having a longitudinal ferrule spring force fn,. The optical connector system includes a substrate housing assembly and a backplane housing assembly. The substrate housing assembly is designed to be mounted on the planar substrate and includes at least one ferrule receiving cavity for receiving the optical fiber ferrule, and a substrate housing assembly spring.
    Type: Grant
    Filed: December 1, 1999
    Date of Patent: July 16, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Harry A. Loder, Duane T. Smith
  • Patent number: 6389214
    Abstract: A furcation apparatus for a multi-conductor cable of the type having reinforcing fibers for longitudinal strength. The furcation apparatus includes a furcation spacer having a plurality of passages extending through an interior of the furcation spacer from a first end to a second end. Each passage is of a size sufficient to receive a furcation tube having reinforcing fibers, and each furcation tube is of a size sufficient to receive one of the plurality of conductors of the cable. The furcation tube reinforcing fibers approach the furcation spacer from the second end and are anchored adjacent the first end, and the cable reinforcing fibers approach the furcation spacer from the first end and are anchored adjacent the second end, such that tensioning the furcation tube reinforcing fibers and cable reinforcing fibers places the furcation spacer under compressive stress.
    Type: Grant
    Filed: May 17, 2001
    Date of Patent: May 14, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Duane T. Smith, Ching-Long Tsai, Robert T. Smith, Kirk A. Halliburton