Patents by Inventor Dun Chi

Dun Chi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11973101
    Abstract: An image-sensor device is provided. The image-sensor device includes a semiconductor substrate and a radiation-sensing region in the semiconductor substrate. The image-sensor device also includes a doped isolation region in the semiconductor substrate and a dielectric film extending into the doped isolation region from a surface of the semiconductor substrate. A portion of the doped isolation region is between the dielectric film and the radiation-sensing region.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: April 30, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jeng-Shyan Lin, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung
  • Patent number: 11923338
    Abstract: A method includes bonding a first wafer to a second wafer, with a first plurality of dielectric layers in the first wafer and a second plurality of dielectric layers in the second wafer bonded between a first substrate of the first wafer and a second substrate in the second wafer. A first opening is formed in the first substrate, and the first plurality of dielectric layers and the second wafer are etched through the first opening to form a second opening. A metal pad in the second plurality of dielectric layers is exposed to the second opening. A conductive plug is formed extending into the first and the second openings.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: March 5, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Ying Ho, Jeng-Shyan Lin, Wen-I Hsu, Feng-Chi Hung, Dun-Nian Yaung, Ying-Ling Tsai
  • Patent number: 11915977
    Abstract: A stacked integrated circuit (IC) device and a method are disclosed. The stacked IC device includes a first semiconductor element. The first substrate includes a dielectric block in the first substrate; and a plurality of first conductive features formed in first inter-metal dielectric layers over the first substrate. The stacked IC device also includes a second semiconductor element bonded on the first semiconductor element. The second semiconductor element includes a second substrate and a plurality of second conductive features formed in second inter-metal dielectric layers over the second substrate. The stacked IC device also includes a conductive deep-interconnection-plug coupled between the first conductive features and the second conductive features. The conductive deep-interconnection-plug is isolated by dielectric block, the first inter-metal-dielectric layers and the second inter-metal-dielectric layers.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: February 27, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shu-Ting Tsai, Jeng-Shyan Lin, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung, Chih-Hui Huang, Sheng-Chau Chen, Shih Pei Chou, Chia-Chieh Lin
  • Patent number: 11201331
    Abstract: There is provided a positive electrode material for a lithium-sulfur battery, including a sulfur-rich polymer and graphene, wherein an internal structure of the sulfur-rich polymer is an interpenetrating network structure; the graphene is doped in the sulfur-rich polymer; a particle size of the sulfur-rich polymer is 100-300 meshes; and the number of flake layers of the graphene is 2-10. A preparation method includes: crushing a prepared sulfur-rich polymer into powder, adding a solvent to obtain a solution, performing sufficient stirring processing; performing ultrasonic dispersion on graphene in a solvent to generate a suspension; and mixing the two solutions, then continuing to perform ultrasonic dispersion and stirring, and finally removing the solvent and drying a product to obtain the positive electrode material for a lithium-sulfur battery.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: December 14, 2021
    Inventors: Dun Chi, Junping Yan
  • Publication number: 20200044253
    Abstract: There is provided a positive electrode material for a lithium-sulfur battery, including a sulfur-rich polymer and graphene, wherein an internal structure of the sulfur-rich polymer is an interpenetrating network structure; the graphene is doped in the sulfur-rich polymer; a particle size of the sulfur-rich polymer is 100-300 meshes; and the number of flake layers of the graphene is 2-10. A preparation method includes: crushing a prepared sulfur-rich polymer into powder, adding a solvent to obtain a solution, performing sufficient stirring processing; performing ultrasonic dispersion on graphene in a solvent to generate a suspension; and mixing the two solutions, then continuing to perform ultrasonic dispersion and stirring, and finally removing the solvent and drying a product to obtain the positive electrode material for a lithium-sulfur battery.
    Type: Application
    Filed: January 8, 2018
    Publication date: February 6, 2020
    Inventors: Dun CHI, Junping YAN
  • Patent number: 10050269
    Abstract: The disclosure relates to the manufacturing of a lead-acid battery that includes a composite that includes lead oxide and a nanomaterial. A method of preparing the composite is disclosed. In one embodiment, an in-situ sol-gel reaction of a solution occurs in the presence of lead oxide to produce a composite that includes the lead oxide and a nanomaterial (e.g., a nano-oxide). The solution may include a precursor that includes metal alkoxide or silicate. The composite may include the lead oxide and the nanomaterial dispersed or distributed among particles of the lead oxide. A lead-acid battery may be manufactured using the composite. Various properties of a lead-acid battery may be improved by using the composite as part of the active material including a longer life expectancy, increased specific energy and increased power-to-weight ratio.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: August 14, 2018
    Inventors: Dun Chi, Yimin Chen
  • Patent number: 10044037
    Abstract: The disclosure relates to the manufacturing of a lead-acid battery that includes a composite that includes lead oxide and a nanomaterial. A method of preparing the composite is disclosed. In one embodiment, an in-situ sol-gel reaction of a solution occurs in the presence of lead oxide to produce a composite that includes the lead oxide and a nanomaterial (e.g., a nano-oxide). The solution may include a precursor that includes metal alkoxide or silicate. The composite may include the lead oxide and the nanomaterial dispersed or distributed among particles of the lead oxide. A lead-acid battery may be manufactured using the composite. Various properties of a lead-acid battery may be improved by using the composite as part of the active material including a longer life expectancy, increased specific energy and increased power-to-weight ratio.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: August 7, 2018
    Inventors: Dun Chi, Yimin Chen
  • Publication number: 20160260970
    Abstract: The disclosure relates to the manufacturing of a lead-acid battery that includes a composite that includes lead oxide and a nanomaterial. A method of preparing the composite is disclosed. In one embodiment, an in-situ sol-gel reaction of a solution occurs in the presence of lead oxide to produce a composite that includes the lead oxide and a nanomaterial (e.g., a nano-oxide). The solution may include a precursor that includes metal alkoxide or silicate. The composite may include the lead oxide and the nanomaterial dispersed or distributed among particles of the lead oxide. A lead-acid battery may be manufactured using the composite. Various properties of a lead-acid battery may be improved by using the composite as part of the active material including a longer life expectancy, increased specific energy and increased power-to-weight ratio.
    Type: Application
    Filed: June 17, 2015
    Publication date: September 8, 2016
    Inventors: Dun Chi, Yimin Chen
  • Publication number: 20160260971
    Abstract: The disclosure relates to the manufacturing of a lead-acid battery that includes a composite that includes lead oxide and a nanomaterial. A method of preparing the composite is disclosed. In one embodiment, an in-situ sol-gel reaction of a solution occurs in the presence of lead oxide to produce a composite that includes the lead oxide and a nanomaterial (e.g., a nano-oxide). The solution may include a precursor that includes metal alkoxide or silicate. The composite may include the lead oxide and the nanomaterial dispersed or distributed among particles of the lead oxide. A lead-acid battery may be manufactured using the composite. Various properties of a lead-acid battery may be improved by using the composite as part of the active material including a longer life expectancy, increased specific energy and increased power-to-weight ratio.
    Type: Application
    Filed: March 2, 2015
    Publication date: September 8, 2016
    Inventors: Dun Chi, Yimin Chen
  • Publication number: 20110060987
    Abstract: The invention provides a touch screen display with on-screen display (OSD) function and OSD control method thereof. In particular, the touch screen display according to the invention utilizes a touch screen thereof to assist in controlling launch, close and various adjust of the OSD function. Thereby, the touch screen display according to the invention doesn't need any more buttons and encoders utilized in prior arts to control OSD function.
    Type: Application
    Filed: September 5, 2010
    Publication date: March 10, 2011
    Applicant: QISDA CORPORATION
    Inventor: Dun-Chi Huang