Patents by Inventor Dun-Nian Yaung

Dun-Nian Yaung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190157319
    Abstract: An image sensor device structure is provided. The image sensor device structure includes a substrate, and the substrate is doped with a first conductivity type. The image sensor device structure includes a light-sensing region formed in the substrate, and the light-sensing region is doped with a second conductivity type that is different from the first conductivity type. The image sensor device structure further includes a doping region extended into the light-sensing region, and the doping region is doped with the first conductivity type. The image sensor device structure also includes a plurality of color filters formed on the doping region.
    Type: Application
    Filed: January 11, 2018
    Publication date: May 23, 2019
    Inventors: Yen-Ting CHIANG, Chun-Yuan CHEN, Hsiao-Hui TSENG, Yu-Jen WANG, Shyh-Fann TING, Wei-Chuang WU, Jen-Cheng LIU, Dun-Nian YAUNG
  • Patent number: 10297631
    Abstract: In some embodiments, the present disclosure relates to an integrated chip (IC) structure having a conductive blocking structure configured prevent radiation produced by a device within a first die from affecting an image sensing element within a second die. The IC structure has a first IC die with one or more semiconductor devices and a second IC die with an array of image sensing elements. A hybrid bonding interface region is arranged between the first and second IC die. A conductive bonding structure is arranged within the hybrid bonding interface region and is configured to electrically couple the first IC die to the second IC die. A conductive blocking structure is arranged within the hybrid bonding interface region and extends laterally between the one or more semiconductor devices and the array of image sensing elements.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: May 21, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Ying Ho, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung, Yan-Chih Lu
  • Patent number: 10297632
    Abstract: A design method for an image sensor device includes providing an initial design for an image sensor device. The initial design includes a pixel array region and a through-via region disposed proximate the pixel array region. The initial design has a first length between the pixel array region and the through-via region. The initial design has a second length that is a width of the through-via region. The design method includes analyzing a ratio of the second length and the first length, and modifying the initial design to achieve a ratio of the second length and the first length within a particular range.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: May 21, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Chun-Han Chen, Szu-Ying Chen, Dun-Nian Yaung
  • Publication number: 20190148266
    Abstract: Present disclosure provides a semiconductor structure, including a semiconductor substrate having an active side, an interconnect layer in proximity to the active side of the semiconductor substrate, and a through substrate via extending from the semiconductor substrate to a first metal layer of the interconnect layer. The TSV being wider than the continuous metal feature. Present disclosure also provides a method for manufacturing the semiconductor structure described herein.
    Type: Application
    Filed: December 20, 2018
    Publication date: May 16, 2019
    Inventors: MIN-FENG KAO, DUN-NIAN YAUNG, JEN-CHENG LIU, CHING-CHUN WANG, KUAN-CHIEH HUANG, HSING-CHIH LIN, YI-SHIN CHU
  • Publication number: 20190148435
    Abstract: A method includes bonding a first semiconductor chip on a second semiconductor chip, applying an etching process to the first semiconductor chip and the second semiconductor chip until a metal surface of the second semiconductor chip is exposed, wherein as a result of applying the etching process, an opening is formed in the first semiconductor chip and the second semiconductor chip and plating a conductive material in the opening to from a conductive plug.
    Type: Application
    Filed: December 18, 2018
    Publication date: May 16, 2019
    Inventors: Jeng-Shyan Lin, Shu-Ting Tsai, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung, Shih Pei Chou, Min-Feng Kao, Szu-Ying Chen
  • Patent number: 10290671
    Abstract: An image sensor device includes a first substrate, an interconnect structure, a conductive layer, a conductive via and a second substrate. The first substrate includes a first region including a pixel array and a second region including a circuit. The interconnect structure is over the pixel array or the circuit. The interconnect structure electrically connecting the circuit to the pixel array. The conductive layer is on the interconnect structure. The conductive via passes through the second substrate and at least partially embedded in the conductive layer. The second substrate is over the conductive layer.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: May 14, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-De Wang, Dun-Nian Yaung, Jen-Cheng Liu, Chun-Chieh Chuang, Jeng-Shyan Lin
  • Publication number: 20190139999
    Abstract: An image sensor is disclosed. The image sensor includes an epitaxial layer, a plurality of plug structures and an interconnect structure. Wherein the plurality of plug structures are formed in the epitaxial layer, and each plug structure has doped sidewalls, the epitaxial layer and the doped sidewalls form a plurality of photodiodes, the plurality of plug structures are used to separate adjacent photodiodes, and the epitaxial layer and the doped sidewalls are coupled to the interconnect structure via the plug structures. An associated method of fabricating the image sensor is also disclosed. The method includes: providing a substrate having a first-type doped epitaxial substrate layer on a second-type doped epitaxial substrate layer; forming a plurality of isolation trenches in the first-type doped epitaxial substrate layer; forming a second-type doped region along sidewalls and bottoms of the plurality of isolation trenches; and filling the plurality of isolation trenches by depositing metal.
    Type: Application
    Filed: January 7, 2019
    Publication date: May 9, 2019
    Inventors: ALEXANDER KALNITSKY, JHY-JYI SZE, DUN-NIAN YAUNG, CHEN-JONG WANG, YIMIN HUANG, YUICHIRO YAMASHITA
  • Publication number: 20190139997
    Abstract: A semiconductor image sensor device includes a semiconductor substrate, a radiation-sensing region, and a first isolation structure. The radiation-sensing region is in the semiconductor substrate. The first isolation structure is in the semiconductor substrate and adjacent to the radiation-sensing region. The first isolation structure includes a bottom isolation portion in the semiconductor substrate, an upper isolation portion in the semiconductor substrate, and a diffusion barrier layer surrounding a sidewall of the upper isolation portion.
    Type: Application
    Filed: March 27, 2018
    Publication date: May 9, 2019
    Inventors: YEN-TING CHIANG, CHUN-YUAN CHEN, HSIAO-HUI TSENG, SHENG-CHAN LI, YU-JEN WANG, WEI CHUANG WU, SHYH-FANN TING, JEN-CHENG LIU, DUN-NIAN YAUNG
  • Publication number: 20190140112
    Abstract: A system and method for blocking heat from reaching an image sensor in a three dimensional stack with a semiconductor device. In an embodiment a heat sink is formed in a back end of line process either on the semiconductor device or else on the image sensor itself when the image sensor is in a backside illuminated configuration. The heat sink may be a grid in either a single layer or in two layers, a zig-zag pattern, or in an interleaved fingers configuration.
    Type: Application
    Filed: December 17, 2018
    Publication date: May 9, 2019
    Inventors: Kuo-Chin Huang, Tzu-Jui Wang, Szu-Ying Chen, Dun-Nian Yaung, Jen-Cheng Liu, Cheng San Chou, Jung-Kuo Tu, Cheng-Chieh Hsieh
  • Patent number: 10283549
    Abstract: Some embodiments of the present disclosure relate to a method of forming an integrated chip. The method includes forming a first interconnect wire within a first inter-level dielectric (ILD) layer over a substrate. One or more vias are formed on the first interconnect wire and within a second ILD layer separated from the substrate by the first ILD layer. One or more additional vias are formed within the second ILD layer. Respective ones of the one or more vias have a larger size than respective ones of the one or more additional vias. A thickness of the substrate is reduced, and the substrate is etched to form a bond pad opening extending through the substrate to the first interconnect wire. A bond pad is formed within the bond pad opening and directly over the one or more vias.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: May 7, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sin-Yao Huang, Ching-Chun Wang, Dun-Nian Yaung, Feng-Chi Hung
  • Publication number: 20190131330
    Abstract: A stacked integrated circuit (IC) device and a method are disclosed. The stacked IC device includes a first semiconductor element and a second semiconductor element bonded on the first semiconductor element. The first semiconductor element includes a first substrate, a common conductive feature in the first substrate, a first inter-level dielectric (ILD) layer, a first interconnection feature and a conductive plug connecting the first interconnection feature to the common conductive feature. The second semiconductor element includes a second substrate, a second ILD layers over the second substrate and a second interconnection feature in second ILD layers. The device also includes a conductive deep plug connecting to the common conductive feature in the first semiconductor element and the second interconnection feature. The conductive deep plug is separated with the conductive plug by the first ILD layer.
    Type: Application
    Filed: December 14, 2018
    Publication date: May 2, 2019
    Inventors: Chun-Chieh Chuang, Dun-Nian Yaung, Jen-Cheng Liu, Feng-Chi Hung, Tzu-Hsuan Hsu, Shu-Ting Tsai, Min-Feng Kao
  • Patent number: 10276618
    Abstract: The present disclosure, in some embodiments, relates to a CMOS image sensor. The CMOS image sensor has an image sensing element disposed within a substrate. A plurality of isolation structures are arranged along a back-side of the substrate and are separated from opposing sides of the image sensing element by non-zero distances. A doped region is laterally arranged between the plurality of isolation structures. The doped region is also vertically arranged between the image sensing element and the back-side of the substrate. The doped region physically contacts the image sensing element.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Yuan Chen, Ching-Chun Wang, Dun-Nian Yaung, Hsiao-Hui Tseng, Jhy-Jyi Sze, Shyh-Fann Ting, Tzu-Jui Wang, Yen-Ting Chiang, Yu-Jen Wang, Yuichiro Yamashita
  • Patent number: 10276619
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a first semiconductor die, and a second semiconductor die bonded on the first semiconductor die. A through-substrate via penetrates through a semiconductor substrate of the second semiconductor die. A passivation layer is disposed between the first semiconductor die and the second semiconductor die, wherein the passivation layer is directly bonded to the semiconductor substrate of the second semiconductor die. A conductive feature passes through the passivation layer, wherein the conductive feature is bonded to the through-substrate via. A barrier layer is disposed between the conductive feature and the passivation layer. The barrier layer covers sidewalls of the conductive feature and separates the surface of the conductive feature from a nearest neighboring surface of the first or second semiconductor die.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Min-Feng Kao, Dun-Nian Yaung, Jen-Cheng Liu, Hsun-Ying Huang
  • Patent number: 10276622
    Abstract: An image-sensor device includes a substrate including a pixel region and a logic region. A logic transistor is disposed in the logic region and is surrounded by a logic isolation feature. A radiation-sensing region is disposed in the pixel region of the substrate. An epitaxial pixel isolation feature is disposed in the pixel region and surrounds the radiation-sensing region. A doped region with a same doping polarity as the radiation-sensing region is located between a bottom of the radiation-sensing region and the back surface of the substrate. The epitaxial pixel isolation feature is in direct contact with the doped region. The doped region extends continuously under the pixel region and the logic region. The epitaxial pixel isolation feature is in direct contact with the doped region, and the logic isolation feature is spaced apart from the doped region.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wen-I Hsu, Feng-Chi Hung, Chun-Chieh Chuang, Dun-Nian Yaung, Jen-Cheng Liu
  • Publication number: 20190123085
    Abstract: A photo diode includes a pixel unit, a photo conversion layer, and a dielectric layer. The pixel unit includes a pair of pixels. The photo conversion layer is above the pixel unit and has a pair of portions, each of which corresponds to a respective one of the pixels. The dielectric layer is between the portions of the photo conversion layer. A method of manufacturing the photo diode is also disclosed.
    Type: Application
    Filed: December 18, 2018
    Publication date: April 25, 2019
    Inventors: Tzu-Jui Wang, Keng-Yu Chou, Chun-Hao Chuang, Ming-Chieh Hsu, Ren-Jie Lin, Jen-Cheng Liu, Dun-Nian Yaung
  • Publication number: 20190122931
    Abstract: The present disclosure, in some embodiments, relates to an integrated circuit having an inductor with one or more turns arranged along vertical planes that intersect an underlying substrate. In some embodiments, the integrated circuit includes a plurality of conductive routing layers having conductive wires and conductive vias disposed within one or more dielectric structures abutting a first substrate. The plurality of conductive routing layers define an inductor having one or more turns respectively including a vertically extending segment arranged along a plane that intersects the first substrate. The vertically extending segment has a plurality of the conductive wires and the conductive vias.
    Type: Application
    Filed: October 25, 2017
    Publication date: April 25, 2019
    Inventors: Shih-Han Huang, Ching-Chun Wang, Dun-Nian Yaung, Hsing-Chih Lin, Jen-Cheng Liu, Min-Feng Kao
  • Publication number: 20190123092
    Abstract: A method includes bonding a Backside Illumination (BSI) image sensor chip to a device chip, forming a first via in the BSI image sensor chip to connect to a first integrated circuit device in the BSI image sensor chip, forming a second via penetrating through the BSI image sensor chip to connect to a second integrated circuit device in the device chip, and forming a metal pad to connect the first via to the second via.
    Type: Application
    Filed: December 17, 2018
    Publication date: April 25, 2019
    Inventors: Jeng-Shyan Lin, Feng-Chi Hung, Dun-Nian Yaung, Jen-Cheng Liu, Szu-Ying Chen, Wen-De Wang, Tzu-Hsuan Hsu
  • Publication number: 20190123026
    Abstract: A device comprises a first chip comprising a first connection pad embedded in a first dielectric layer and a first bonding pad embedded in the first dielectric layer, wherein the first bonding pad comprises a first portion and a second portion, the second portion being in contact with the first connection pad and a second chip comprising a second bonding pad embedded in a second dielectric layer of the second chip, wherein the first chip and the second chip are face-to-face bonded together through the first bonding pad the second bonding pad.
    Type: Application
    Filed: December 17, 2018
    Publication date: April 25, 2019
    Inventors: Szu-Ying Chen, Meng-Hsun Wan, Dun-Nian Yaung
  • Patent number: 10269863
    Abstract: Methods for forming via last through-vias. A method includes providing an active device wafer having a front side including conductive interconnect material disposed in dielectric layers and having an opposing back side; providing a carrier wafer having through vias filled with an oxide extending from a first surface of the carrier wafer to a second surface of the carrier wafer; bonding the front side of the active device wafer to the second surface of the carrier wafer; etching the oxide in the through vias in the carrier wafer to form through oxide vias; and depositing conductor material into the through oxide vias to form conductors that extend to the active carrier wafer and make electrical contact to the conductive interconnect material. An apparatus includes a carrier wafer with through oxide vias extending through the carrier wafer to an active device wafer bonded to the carrier wafer.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Szu-Ying Chen, Pao-Tung Chen, Dun-Nian Yaung, Jen-Cheng Liu
  • Patent number: 10269768
    Abstract: A method includes bonding a first wafer to a second wafer, with a first plurality of dielectric layers in the first wafer and a second plurality of dielectric layers in the second wafer bonded between a first substrate of the first wafer and a second substrate in the second wafer. A first opening is formed in the first substrate, and the first plurality of dielectric layers and the second wafer are etched through the first opening to form a second opening. A metal pad in the second plurality of dielectric layers is exposed to the second opening. A conductive plug is formed extending into the first and the second openings.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: April 23, 2019
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Ying Ho, Jeng-Shyan Lin, Wen-I Hsu, Feng-Chi Hung, Dun-Nian Yaung, Ying-Ling Tsai