Patents by Inventor Duncan Browne

Duncan Browne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200199596
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of HBV gene expression and/or activity, and/or modulate a HBV gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against HBV gene expression.
    Type: Application
    Filed: August 5, 2019
    Publication date: June 25, 2020
    Inventors: Steven Bartz, Duncan Brown, Michael Robinson
  • Patent number: 10577606
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of PHD2 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against PHD2 gene expression.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: March 3, 2020
    Assignee: Sirna Therapeutics, Inc.
    Inventors: Brandon Ason, Duncan Brown, Walter R. Strapps
  • Publication number: 20190330639
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of CTNNB1 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against CTNNB1 gene expression.
    Type: Application
    Filed: February 8, 2019
    Publication date: October 31, 2019
    Inventors: Duncan Brown, James J. Cunningham, Marian Gindy, Victoria Pickering, Matthew G. Stanton, Steven M. Stirdivant, Walter R. Strapps
  • Patent number: 10407682
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of HBV gene expression and/or activity, and/or modulate a HBV gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against HBV gene expression.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: September 10, 2019
    Assignee: Sirna Therapeutics, Inc.
    Inventors: Steven Bartz, Duncan Brown, Michael Robinson
  • Patent number: 10384442
    Abstract: A printing press for printing a heat seal film for packaging comprises at least two receivers, a first printer and a laminator, wherein, in use, a first receiver is capable of receiving a sealing layer and a second receiver is capable of receiving a printing layer, wherein the printer prints onto the sealing layer to provide a printed sealing layer and simultaneously the laminator laminates the printed sealing layer together with the printing layer.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: August 20, 2019
    Assignee: Leading Edge Labels Ltd.
    Inventor: Michael Duncan Brown
  • Patent number: 10246714
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of CTNNB1 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against CTNNB1 gene expression.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: April 2, 2019
    Assignee: Sirna Therapeutics, Inc.
    Inventors: Duncan Brown, James J. Cunningham, Marian Gindy, Victoria Pickering, Matthew G. Stanton, Steven M. Stirdivant, Walter R. Strapps
  • Publication number: 20190060488
    Abstract: The present invention provides methods comprising the in vivo delivery of small nucleic acid molecules capable of mediating RNA interference and reducing the expression of myostatin, wherein the small nucleic acid molecules are introduced to a subject by systemic administration. Specifically, the invention relates to methods comprising the in vivo delivery of short interfering nucleic acid (siNA) molecules that target a myostatin gene expressed by a subject, wherein the siNA molecule is conjugated to a lipophilic moiety, such as cholesterol. The myostatin siNA conjugates that are delivered as per the methods disclosed are useful to modulate the in vivo expression of myostatin, increase muscle mass and/or enhance muscle performance. Use of the disclosed methods is further indicated for treating musculoskeletal diseases or disorders and/or diseases or disorders that result in conditions in which muscle is adversely affected.
    Type: Application
    Filed: May 31, 2018
    Publication date: February 28, 2019
    Inventors: Marija Tadin-strapps, Tayeba Khan, Walter Richard Strapps, Laura Sepp-Lorenzino, Vasant R. Jadhav, Duncan Brown
  • Publication number: 20180195071
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of HBV gene expression and/or activity, and/or modulate a HBV gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against HBV gene expression.
    Type: Application
    Filed: December 18, 2017
    Publication date: July 12, 2018
    Inventors: Steven Bartz, Duncan Brown, Michael Robinson
  • Patent number: 10004814
    Abstract: The present invention provides methods comprising the in vivo delivery of small nucleic acid molecules capable of mediating RNA interference and reducing the expression of myostatin, wherein the small nucleic acid molecules are introduced to a subject by systemic administration. Specifically, the invention relates to methods comprising the in vivo delivery of short interfering nucleic acid (siNA) molecules that target a myostatin gene expressed by a subject, wherein the siNA molecule is conjugated to a lipophilic moiety, such as cholesterol. The myostatin siNA conjugates that are delivered as per the methods disclosed are useful to modulate the in vivo expression of myostatin, increase muscle mass and/or enhance muscle performance. Use of the disclosed methods is further indicated for treating musculoskeletal diseases or disorders and/or diseases or disorders that result in conditions in which muscle is adversely affected.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: June 26, 2018
    Assignee: SIRNA THERAPEUTICS, INC.
    Inventors: Marija Tadin-Strapps, Tayeba Khan, Walter Richard Strapps, Laura Sepp-Lorenzino, Vasant Jadhav, Duncan Brown
  • Publication number: 20180100154
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of PHD2 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against PHD2 gene expression.
    Type: Application
    Filed: August 2, 2017
    Publication date: April 12, 2018
    Inventors: Brandon Ason, Duncan Brown, Walter R. Strapps
  • Publication number: 20180030454
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of CTNNB1 gene expression and/or or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against CTNNB1 gene expression.
    Type: Application
    Filed: August 8, 2017
    Publication date: February 1, 2018
    Inventors: Duncan Brown, James J. Cunningham, Marian Gindy, Victoria Pickering, Matthew G. Stanton, Steven M. Stirdivant, Walter R. Strapps
  • Patent number: 9879262
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of HBV gene expression and/or activity, and/or modulate a HBV gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against HBV gene expression.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: January 30, 2018
    Assignee: Sirna Therapeutics, Inc.
    Inventors: Steven Bartz, Duncan Brown, Michael Robinson
  • Patent number: 9850491
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of CTNNB1 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that medium RNA interference (RNAi) against CTNNB1 gene expression.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: December 26, 2017
    Assignee: Sirna Therapeutics, Inc.
    Inventors: Duncan Brown, James J. Cunningham, Marian Gindy, Victoria Pickering, Matthew G. Stanton, Steven M. Stirdivant, Walter R. Strapps
  • Publication number: 20170239936
    Abstract: A printing press for printing a heat seal film for packaging comprises at least two receivers, a first printer and a laminator, wherein, in use, a first receiver is capable of receiving a sealing layer and a second receiver is capable of receiving a printing layer, wherein the printer prints onto the sealing layer to provide a printed sealing layer and simultaneously the laminator laminates the printed sealing layer together with the printing layer.
    Type: Application
    Filed: October 15, 2015
    Publication date: August 24, 2017
    Inventor: Michael Duncan BROWN
  • Publication number: 20170029824
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of CTNNB1 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that medium RNA interference (RNAi) against CTNNB1 gene expression.
    Type: Application
    Filed: August 1, 2016
    Publication date: February 2, 2017
    Inventors: Duncan Brown, James J. Cunningham, Marian Gindy, Victoria Pickering, Matthew G. Stanton, Steven M. Stirdivant, Walter R. Strapps
  • Publication number: 20160369279
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of HBV gene expression and/or activity, and/or modulate a HBV gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against HBV gene expression.
    Type: Application
    Filed: August 30, 2016
    Publication date: December 22, 2016
    Inventors: Steven Bartz, Duncan Brown, Michael Robinson
  • Publication number: 20160298123
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of PHD2 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against PHD2 gene expression.
    Type: Application
    Filed: December 1, 2015
    Publication date: October 13, 2016
    Inventors: Brandon Ason, Duncan Brown, Walter R. Strapps
  • Patent number: 9464290
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of HBV gene expression and/or activity, and/or modulate a HBV gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against HBV gene expression.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: October 11, 2016
    Assignee: Sirna Therapeutics, Inc.
    Inventors: Steven Bartz, Duncan Brown, Michael Robinson
  • Patent number: 9447420
    Abstract: The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of CTNNB1 gene expression and/or activity, and/or modulate a beta-catenin gene expression pathway. Specifically, the invention relates to double-stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules that are capable of mediating or that mediate RNA interference (RNAi) against CTNNB1 gene expression.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: September 20, 2016
    Assignee: Sirna Therapeutics, Inc.
    Inventors: Duncan Brown, James J. Cunningham, Marian Gindy, Victoria Pickering, Matthew G. Stanton, Steven M. Stirdivant, Walter R. Strapps
  • Patent number: RE46706
    Abstract: A system and method for indicating the load condition of a vehicle having suspension components comprising: at least one of an inclinometer or an accelerometer mounted on at least one suspension component to measure the deflection angle of the suspension component; and a controller configured to use deflection angle and generate an output representative of the load condition of the vehicle.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: February 13, 2018
    Assignee: VPG SYSTEMS U.K., LIMITED
    Inventor: Duncan Brown