Patents by Inventor Duncan Kitchin

Duncan Kitchin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12237589
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: February 25, 2025
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20240243477
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: February 15, 2024
    Publication date: July 18, 2024
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Marian Verhelst, Yossi Tsfati, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 11955732
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: April 9, 2024
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 11751025
    Abstract: A communication device for multi-radio access technology (RAT) communications includes one or more processors and a plurality of transceivers. Each transceiver is configured to operate in at least one RAT of a plurality of RATs. The processors are configured to establish connection with a second communication device using a first transceiver of the plurality of transceivers and a first RAT of the plurality of RATs. A first data stream associated with a communication link connected to the second communication device and a third communication device is receive via a convergence function at the second communication device. The communication link uses a second RAT of the plurality of RATs. A code sequence is applied to a second data stream to generate an encoded second data stream, which is transmitted to the third communication device via a second communication link established based on information received via the first data stream.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: September 5, 2023
    Assignee: Intel Corporation
    Inventors: Stefan Fechtel, Kilian Roth, Bertram Gunzelmann, Markus Dominik Mueck, Ingolf Karls, Zhibin Yu, Thorsten Clevorn, Nageen Himayat, Dave A. Cavalcanti, Ana Lucia Pinheiro, Bahareh Sadeghi, Hassnaa Moustafa, Marcio Rogerio Juliato, Rafael Misoczki, Emily H. Qi, Jeffrey R. Foerster, Duncan Kitchin, Debdeep Chatterjee, Jong-Kae Fwu, Carlos Aldana, Shilpa Talwar, Harry G. Skinner, Debabani Choudhury
  • Publication number: 20230145401
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 27, 2022
    Publication date: May 11, 2023
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20220384956
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: May 2, 2022
    Publication date: December 1, 2022
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asi, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20220353652
    Abstract: A communication device for multi-radio access technology (RAT) communications includes one or more processors and a plurality of transceivers. Each transceiver is configured to operate in at least one RAT of a plurality of RATs. The processors are configured to establish connection with a second communication device using a first transceiver of the plurality of transceivers and a first RAT of the plurality of RATs. A first data stream associated with a communication link connected to the second communication device and a third communication device is receive via a convergence function at the second communication device. The communication link uses a second RAT of the plurality of RATs. A code sequence is applied to a second data stream to generate an encoded second data stream, which is transmitted to the third communication device via a second communication link established based on information received via the first data stream.
    Type: Application
    Filed: February 23, 2022
    Publication date: November 3, 2022
    Inventors: Stefan Fechtel, Kilian Peter Anton Roth, Bertram Gunzelmann, Markus Dominik Mueck, Ingolf Karls, Zhibin Yu, Thorsten Clevorn, Nageen Himayat, Dave A. Cavalcanti, Ana Lucia Pinheiro, Bahareh Sadeghi, Hassnaa Moustafa, Marcio Rogerio Juliato, Rafael Misoczki, Emily H. Qi, Jeffrey R. Foerster, Duncan Kitchin, Debdeep Chatterjee, Jong-Kae Fwu, Carlos Aldana, Shilpa Talwar, Harry G. Skinner, Debabani Choudhury
  • Publication number: 20220353650
    Abstract: Disclosed herein is a communication device for vehicular radio communications. The communication device includes one or more processors configured to identify a plurality of vehicular communication devices that form a cluster of cooperating vehicular communication devices. The one or more processors also determine channel resource allocations for the plurality of vehicular communication devices that includes channel resources allocated for a first vehicular radio communication technology and channel resources allocated for a second vehicular radio communication technology. The one or more processors also transmit the channel resource allocation to the plurality of vehicular communication devices.
    Type: Application
    Filed: November 26, 2021
    Publication date: November 3, 2022
    Inventors: Carlos ALDANA, Biljana BADIC, Dave CAVALCANTI, Debabani CHOUDHURY, Christian DREWES, Jong-Kae FWU, Bertram GUNZELMANN, Nageen HIMAYAT, Ingolf KARLS, Duncan KITCHIN, Markus Dominik MUECK, Bernhard RAAF, Domagoj SIPRAK, Harry SKINNER, Christopher STOBART, Shilpa TALWAR, Zhibin YU
  • Patent number: 11424539
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: August 23, 2022
    Assignee: Intel Corporation
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Patent number: 11304037
    Abstract: Systems, devices, and techniques for V2X communications using multiple radio access technologies (RATs) are described herein. A communication associated with one or more of the multiple RATs may be received at a device. The device may include a transceiver interface with multiple connections to communicate with multiple transceiver chains. The multiple transceiver chains can be configured to support multiple RATs. Additionally, the multiple transceiver chains may be controlled via the multiple connections of the transceiver interface to coordinate the multiple RATs to complete the communication.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: April 12, 2022
    Assignee: Intel Corporation
    Inventors: Stefan Fechtel, Kilian Peter Anton Roth, Bertram Gunzelmann, Markus Dominik Mueck, Ingolf Karls, Zhibin Yu, Thorsten Clevorn, Nageen Himayat, Dave A. Cavalcanti, Ana Lucia Pinheiro, Bahareh Sadeghi, Hassnaa Moustafa, Marcio Rogerio Juliato, Rafael Misoczki, Emily H. Qi, Jeffrey R. Foerster, Duncan Kitchin, Debdeep Chatterjee, Jong-Kae Fwu, Carlos Aldana, Shilpa Talwar, Harry G. Skinner, Debabani Choudhury
  • Patent number: 11228880
    Abstract: A communication device for a vehicular radio communications includes one or more processors configured to identify a plurality of vehicular communication devices that form a cluster of cooperating vehicular communication devices, determine channel resource allocations for the plurality of vehicular communication devices that includes channel resources allocated for a first vehicular radio communication technology and channel resources allocated for a second vehicular radio communication technology, and transmit the channel resource allocation to the plurality of vehicular communication devices.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: January 18, 2022
    Assignee: INTEL CORPORATION
    Inventors: Carlos Aldana, Dave Cavalcanti, Debabani Choudhury, Jong-Kae Fwu, Bertram Gunzelmann, Nageen Himayat, Ingolf Karls, Duncan Kitchin, Markus Dominik Mueck, Harry Skinner, Christopher Stobart, Shilpa Talwar, Zhibin Yu
  • Publication number: 20200280827
    Abstract: Systems, devices, and techniques for V2X communications using multiple radio access technologies (RATs) are described herein. A communication associated with one or more of the multiple RATs may be received at a device. The device may include a transceiver interface with multiple connections to communicate with multiple transceiver chains. The multiple transceiver chains can be configured to support multiple RATs. Additionally, the multiple transceiver chains may be controlled via the multiple connections of the transceiver interface to coordinate the multiple RATs to complete the communication.
    Type: Application
    Filed: June 28, 2018
    Publication date: September 3, 2020
    Inventors: Stefan Fechtel, Kilian Roth, Bertram Gunzelmann, Markus Dominik Mueck, Ingolf Karls, Zhibin Yu, Thorsten Clevorn, Nageen Himayat, Dave A. Cavalcanti, Ana Lucia Pinheiro, Bahareh Sadeghi, Hassnaa Moustafa, Marcio Rogerio Juliato, Rafael Misoczki, Emily H. Qi, Jeffrey R. Foerster, Duncan Kitchin, Debdeep Chatterjee, Jong-Kae Fwu, Carlos Aldana, Shilpa Talwar, Harry G. Skinner, Debabani Choudhury
  • Publication number: 20200091608
    Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
    Type: Application
    Filed: December 20, 2017
    Publication date: March 19, 2020
    Inventors: Erkan Alpman, Arnaud Lucres Amadjikpe, Omer Asaf, Kameran Azadet, Rotem Banin, Miroslav Baryakh, Anat Bazov, Stefano Brenna, Bryan K. Casper, Anandaroop Chakrabarti, Gregory Chance, Debabani Choudhury, Emanuel Cohen, Claudio Da Silva, Sidharth Dalmia, Saeid Daneshgar Asl, Kaushik Dasgupta, Kunal Datta, Brandon Davis, Ofir Degani, Amr M. Fahim, Amit Freiman, Michael Genossar, Eran Gerson, Eyal Goldberger, Eshel Gordon, Meir Gordon, Josef Hagn, Shinwon Kang, Te Yu Kao, Noam Kogan, Mikko S. Komulainen, Igal Yehuda Kushnir, Saku Lahti, Mikko M. Lampinen, Naftali Landsberg, Wook Bong Lee, Run Levinger, Albert Molina, Resti Montoya Moreno, Tawfiq Musah, Nathan G. Narevsky, Hosein Nikopour, Oner Orhan, Georgios Palaskas, Stefano Pellerano, Ron Pongratz, Ashoke Ravi, Shmuel Ravid, Peter Andrew Sagazio, Eren Sasoglu, Lior Shakedd, Gadi Shor, Baljit Singh, Menashe Soffer, Ra'anan Sover, Shilpa Talwar, Nebil Tanzi, Moshe Teplitsky, Chintan S. Thakkar, Jayprakash Thakur, Avi Tsarfati, Yossi Tsfati, Marian Verhelst, Nir Weisman, Shuhei Yamada, Ana M. Yepes, Duncan Kitchin
  • Publication number: 20200072963
    Abstract: A system and method for radar sensing, including a control system performing radar sensing based on a data communication signal.
    Type: Application
    Filed: March 31, 2017
    Publication date: March 5, 2020
    Applicant: INTEL IP CORPORATION
    Inventors: Zhibin Yu, Bernhard Raaf, Markus Dominik Mueck, Duncan Kitchin, Biljana Badic
  • Patent number: 8976808
    Abstract: A wireless local area network (WLAN) device transmits a header over an air interface, at a first modulation rate. The header may include an indication of a second modulation rate that will be used to transmit a consolidated payload. The device further transmits the consolidated payload at the second modulation rate. The consolidated payload includes multiple data units. In one embodiment, the consolidated payload includes delimiters with validation fields associated with the various data units.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: March 10, 2015
    Inventors: Adrian P. Stephens, Duncan Kitchin
  • Patent number: 8649396
    Abstract: A wireless local area network (WLAN) device transmits a header over an air interface, at a first modulation rate. The header may include an indication of a second modulation rate that will be used to transmit a consolidated payload. The device further transmits the consolidated payload at the second modulation rate. The consolidated payload includes multiple data units. In one embodiment, the consolidated payload includes delimiters with validation fields associated with the various data units.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: February 11, 2014
    Assignee: Intel Corporation
    Inventors: Adrian P. Stephens, Duncan Kitchin
  • Patent number: 8509439
    Abstract: Secure communications may be implemented by transmitting packet data units with information sufficient to enable a receiving entity to reconstruct a nonce. That is, rather than transmitting all of the bits making up the nonce, some of the bits may be transmitted together with an identifier that enables the rest of the bits of the nonce to be obtained by the receiving entity.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: August 13, 2013
    Assignee: Intel Corporation
    Inventors: David Johnston, Duncan Kitchin
  • Patent number: 8320942
    Abstract: Embodiments of wireless device and method for communicating in a wireless network are generally described herein. Other embodiments may be described and claimed. In some embodiments, a wireless device establishes a link using a directional antenna in an initially selected direction with another wireless device. If the link in the initially selected direction deteriorates, the link may be reestablished in a previously identified alternate direction. In some embodiments, the initially selected direction and the alternate direction are jointly selected by both the first and second wireless devices.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: November 27, 2012
    Assignee: Intel Corporation
    Inventors: Ali S. Sadri, Eduardo Casas, Duncan Kitchin
  • Publication number: 20120182983
    Abstract: A wireless local area network (WLAN) device transmits a header over an air interface, at a first modulation rate. The header may include an indication of a second modulation rate that will be used to transmit a consolidated payload. The device further transmits the consolidated payload at the second modulation rate. The consolidated payload includes multiple data units. In one embodiment, the consolidated payload includes delimiters with validation fields associated with the various data units.
    Type: Application
    Filed: March 27, 2012
    Publication date: July 19, 2012
    Inventors: Adrian P. Stephens, Duncan Kitchin
  • Patent number: 8179869
    Abstract: In a wireless network in which the base station has full duplex capability (can transmit on the downlink channel and simultaneously receive on the uplink channel), but the mobile stations have only half duplex capability (each can transmit on the uplink channel and receive on the downlink channel, but not simultaneously), the base station may transmit duplicate copies of multicast data in two or more frames. Some of the addressed mobile station may be scheduled to receive the first frame and transmit during the second frame, while the other addressed mobile stations may be scheduled to transmit during the first frame and receive the second frame.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: May 15, 2012
    Assignee: Intel Corporation
    Inventors: Duncan Kitchin, Muthaiah Venkatachalam