Patents by Inventor Duncan L. McVey

Duncan L. McVey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170219560
    Abstract: The invention provides a method of identifying an antigen from a pathogen or a disease antigen comprising the use of an adenoviral vector array comprising two or more different adenoviral vectors, wherein each adenoviral vector comprises a nucleic acid sequence encoding a different antigen of a pathogen. The adenoviral vectors are administered to antigen presenting cells (APCs) in vitro or to an animal in vivo. The immunogenicity of the antigen is measured by screening for an immune response from effector T lymphocytes in vitro and by screening for the absence of pathogen-induced disease onset in vivo.
    Type: Application
    Filed: April 10, 2017
    Publication date: August 3, 2017
    Applicant: United States of America as Represented by the Secretary of the Navy
    Inventors: Joseph T. Bruder, Imre Kovesdi, Duncan L. McVey, Douglas E. Brough, Richter C. King, Denise L. Doolan, Joao C. Aguair, Daniel J. Carucci, Martha Sedegah, Walter R. Weiss, Keith Limbach
  • Patent number: 9651543
    Abstract: The invention provides a method of identifying an antigen from a pathogen or a disease antigen comprising the use of an adenoviral vector array comprising two or more different adenoviral vectors, wherein each adenoviral vector comprises a nucleic acid sequence encoding a different antigen of a pathogen. The adenoviral vectors are administered to antigen presenting cells (APCs) in vitro or to an animal in vivo. The immunogenicity of the antigen is measured by screening for an immune response from effector T lymphocytes in vitro and by screening for the absence of pathogen-induced disease onset in vivo.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: May 16, 2017
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Joseph T. Bruder, Imre Kovesdi, Duncan L. McVey, Douglas E. Brough, C. Richter King, Denise Louise Doolan, Joao Carlos Aguair, Daniel John Carucci, Martha Sedegah, Walter R. Weiss, Keith Limbach
  • Publication number: 20170082607
    Abstract: The invention provides a method of identifying an antigen from a pathogen or a disease antigen comprising the use of an adenoviral vector array comprising two or more different adenoviral vectors, wherein each adenoviral vector comprises a nucleic acid sequence encoding a different antigen of a pathogen. The adenoviral vectors are administered to antigen presenting cells (APCs) in vitro or to an animal in vivo. The immunogenicity of the antigen is measured by screening for an immune response from effector T lymphocytes in vitro and by screening for the absence of pathogen-induced disease onset in vivo.
    Type: Application
    Filed: April 19, 2013
    Publication date: March 23, 2017
    Inventors: Joseph T. Bruder, Imre Kovesdi, Duncan L. McVey, Douglas E. Brough, C. Richter King, Denise Louise Doolan, Joao Carlos Aguair, Daniel John Carucci, Martha Sedegah, Walter R. Weiss, Keith Limbach
  • Publication number: 20140314809
    Abstract: The invention provides a method of identifying an antigen from a pathogen or a disease antigen comprising the use of an adenoviral vector array comprising two or more different adenoviral vectors, wherein each adenoviral vector comprises a nucleic acid sequence encoding a different antigen of a pathogen. The adenoviral vectors are administered to antigen presenting cells (APCs) in vitro or to an animal in vivo. The immunogenicity of the antigen is measured by screening for an immune response from effector T lymphocytes in vitro and by screening for the absence of pathogen-induced disease onset in vivo.
    Type: Application
    Filed: April 19, 2013
    Publication date: October 23, 2014
    Inventors: Joseph T. Bruder, Imre Kovesdi, Duncan L. McVey, Douglas E. Brough, C. Richter King, Denise Louise Doolan, Joao Carlos Aguair, Daniel John Carucci, Martha Sedegah, Walter R. Weiss, Keith Limbach
  • Patent number: 8765146
    Abstract: The invention provides adenoviral vectors comprising an adenoviral genome comprising heterologous antigen-encoding nucleic acid sequences, such as Plasmodium nucleic acid sequences, operably linked to promoters. The invention further provides a method of inducing an immune response against malaria in a mammal comprising administering the adenoviral vectors to the mammal.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: July 1, 2014
    Assignees: GenVec, Inc., The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., The United States of America, as represented by the Secretary of the Navy
    Inventors: Joseph T. Bruder, Imre Kovesdi, C. Richter King, Duncan L. McVey, Damodar R. Ettyreddy, Denise Louise Doolan, Daniel John Carucci
  • Patent number: 8450055
    Abstract: The invention provides a method of identifying an antigen from a pathogen or a disease antigen comprising the use of an adenoviral vector array comprising two or more different adenoviral vectors, wherein each adenoviral vector comprises a nucleic acid sequence encoding a different antigen of a pathogen. The adenoviral vectors are administered to antigen presenting cells (APCs) in vitro or to an animal in vivo. The immunogenicity of the antigen is measured by screening for an immune response from effector T lymphocytes in vitro and by screening for the absence of pathogen-induced disease onset in vivo.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: May 28, 2013
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventors: Joseph T. Bruder, Imre Kovesdi, Duncan L. McVey, Douglas E. Brough, C. Richter King, Denise Louise Doolan, Joao Carlos Aguair, Daniel John Carucci, Martha Sedegah, Walter R. Weiss, Keith Limbach
  • Publication number: 20100222234
    Abstract: The invention provides a method of identifying an antigen from a pathogen or a disease antigen comprising the use of an adenoviral vector array comprising two or more different adenoviral vectors, wherein each adenoviral vector comprises a nucleic acid sequence encoding a different antigen of a pathogen. The adenoviral vectors are administered to antigen presenting cells (APCs) in vitro or to an animal in vivo. The immunogenicity of the antigen is measured by screening for an immune response from effector T lymphocytes in vitro and by screening for the absence of pathogen-induced disease onset in vivo.
    Type: Application
    Filed: August 25, 2006
    Publication date: September 2, 2010
    Inventors: Joseph T. Bruder, Imre Kovesdi, Duncan L. McVey, Douglas E. Brough, C. Richter King, Denise Louise Doolan, Joao Carlos Aguair, Daniel John Carucci, Martha Sedegah, Walter R. Weiss, Keith Limbach
  • Publication number: 20090148477
    Abstract: The invention provides adenoviral vectors comprising an adenoviral genome comprising heterologous antigen-encoding nucleic acid sequences, such as Plasmodium nucleic acid sequences, operably linked to promoters. The invention further provides a method of inducing an immune response against malaria in a mammal comprising administering the adenoviral vectors to the mammal.
    Type: Application
    Filed: August 31, 2006
    Publication date: June 11, 2009
    Applicant: GENVEC, INC.
    Inventors: Joseph T. Bruder, Imre Kovesdi, C. Richter King, Duncan L. McVey, Damodar R. Ettyreddy, Denise Louis Doolan, Daniel John Carucci, Keith Limbach
  • Publication number: 20090041759
    Abstract: The invention is directed to a method of delivering a gene product to an animal. The method comprises administering an expression vector comprising a nucleic acid sequence operably linked to a promoter and encoding a gene product, and upregulating transcription of the nucleic acid sequence in the ocular cell. The expression vector can be an adenoviral vector. The invention further provides a method of prophylactically or therapeutically treating an animal for at least one ocular-related disorder. The method comprises contacting an ocular cell with an expression vector comprising a nucleic acid sequence encoding an inhibitor of angiogenesis and/or a neurotrophic agent. In one aspect, the method further comprises upregulating transcription of the nucleic acid sequence. Preferably, if 2×108 adenoviral particles of the inventive method are administered to a mouse, the level of expression of the nucleic acid sequence is not diminished more than ten-fold at 28 days post-administration.
    Type: Application
    Filed: May 12, 2008
    Publication date: February 12, 2009
    Applicant: GENVEC, INC.
    Inventors: Duncan L. McVey, Douglas E. Brough, Imre Kovesdi, Lisa Wei
  • Publication number: 20090018100
    Abstract: The present invention is directed to a method of prophylactically or therapeutically treating an animal for at least one ocular-related disorder, e.g., ocular neovascularization or age-related macular degeneration. The method comprises contacting an ocular cell with an expression vector comprising a nucleic acid sequence encoding an inhibitor of angiogenesis and the same or different nucleic acid sequence encoding a neurotrophic agent. The method also can comprise contacting an ocular cell with different expression vectors, each comprising a nucleic acid sequence encoding an inhibitor of angiogenesis and/or a nucleic acid sequence encoding a neurotrophic agent. In addition, the present invention provides a viral vector comprising a nucleic acid sequence encoding pigment epithelium-derived factor (PEDF) or a therapeutic fragment thereof.
    Type: Application
    Filed: September 24, 2008
    Publication date: January 15, 2009
    Applicant: GenVec, Inc.
    Inventors: Imre Kovesdi, Douglas E. Brough, Lisa Wei, Duncan L. McVey
  • Patent number: 7195896
    Abstract: The present invention provides multiply deficient adenoviral vectors and complementing cell lines. Also provided are recombinants of the multiply deficient adenoviral vectors and a therapeutic method, particularly relating to gene therapy, vaccination, and the like, involving the use of such recombinants.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: March 27, 2007
    Assignee: GenVec, Inc.
    Inventors: Imre Kovesdi, Douglas E Brough, Duncan L McVey, Joseph T Bruder, Alena Lizonova
  • Patent number: 7070930
    Abstract: The present invention provides an improved method of making eukaryotic gene transfer vectors comprising homologous recombining lambdid vectors with a second DNA in a bacterium to generate novel recombinant eukaryotic viral gene transfer vectors as well as a novel lambdid vector used in the inventive method and an inventive system comprising the novel lambdid vector.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: July 4, 2006
    Assignee: GenVec, Inc.
    Inventors: Duncan L. McVey, Douglas E. Brough, Mohammed Zuber, Imre Kovesdi
  • Patent number: 6998263
    Abstract: The present invention provides a library of viral vectors, wherein each member comprises a first heterologous DNA encoding a first gene product and a second heterologous DNA encoding a second gene product. The first heterologous DNA is common to each member of the library, while the second heterologous DNA varies between members of the library. The present invention additionally provides a method of constructing a library of viral vectors. The method comprises carrying out homologous recombination between a first DNA molecule and a second DNA molecule to form a pool of intermediate viral vector genomes. One or more linear third DNA molecules are ligated into the pool of intermediate viral genomes to produce a library of viral vector genomes. Alternatively, homologous recombination between linear DNA molecules and recipient DNA molecules produces a library of viral vector genomes. The library of viral vector genomes is converted into a library of viral vectors.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: February 14, 2006
    Assignee: GenVec, Inc.
    Inventors: Imre Kovesdi, Duncan L. McVey, Thomas J. Wickham, Joseph T. Bruder, Douglas E. Brough
  • Patent number: 6908762
    Abstract: The inventive method of producing a eukaryotic viral vector comprises contacting a eukaryotic cell, which comprises a unique enzyme that nicks or cleaves a DNA molecule, with a recombinant phage vector, or contacting a eukaryotic cell, which does not comprise a unique enzyme that nicks or cleaves a DNA molecule, simultaneously or sequentially, in either order, with (i) a unique enzyme that nicks or cleaves a DNA molecule, and (ii) a recombinant phage vector. The recombinant phage vector comprises the DNA molecule comprising (a) a eukaryotic viral vector genome comprising a coding sequence, (b) a phage packaging site that is not contained within the eukaryotic viral vector genome, and (c) a promoter that is operably linked to the coding sequence. Alternatively, the DNA molecule is not present within the recombinant phage vector. The eukaryotic cell is contacted with the first DNA molecule and a recombinant phage vector.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: June 21, 2005
    Assignee: GenVec, Inc.
    Inventors: Imre Kovesdi, Duncan L. McVey
  • Patent number: 6821775
    Abstract: The present invention provides a viral vector comprising a nucleic acid sequence encoding pigment epithelium-derived factor (PEDF) or a therapeutic fragment thereof. The nucleic acid sequence is operably linked to regulatory sequences necessary for expression of PEDF or a therapeutic fragment thereof. Preferably, the viral vector is an adenoviral vector or an adeno-associated viral vector. Also preferably, the viral vector further comprises one or more additional nucleic acid sequences encoding therapeutic substances other than PEDF.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: November 23, 2004
    Assignee: GenVec, Inc.
    Inventors: Imre Kovesdi, Douglas E. Brough, Duncan L. McVey, Lisa Wei
  • Publication number: 20030203480
    Abstract: The inventive method of producing a eukaryotic viral vector comprises contacting a eukaryotic cell, which comprises a unique enzyme that nicks or cleaves a DNA molecule, with a recombinant phage vector, or contacting a eukaryotic cell, which does not comprise a unique enzyme that nicks or cleaves a DNA molecule, simultaneously or sequentially, in either order, with (i) a unique enzyme that nicks or cleaves a DNA molecule, and (ii) a recombinant phage vector. The recombinant phage vector comprises the DNA molecule comprising (a) a eukaryotic viral vector genome comprising a coding sequence, (b) a phage packaging site that is not contained within the eukaryotic viral vector genome, and (c) a promoter that is operably linked to the coding sequence.
    Type: Application
    Filed: April 30, 2003
    Publication date: October 30, 2003
    Applicant: GenVec, Inc.
    Inventors: Imre Kovesdi, Duncan L. McVey
  • Publication number: 20030170899
    Abstract: The present invention provides an improved method of making eukaryotic gene transfer vectors comprising homologous recombining lambdid vectors with a second DNA in a bacterium to generate novel recombinant eukaryotic viral gene transfer vectors as well as a novel lambdid vector used in the inventive method and an inventive system comprising the novel lambdid vector.
    Type: Application
    Filed: June 3, 2002
    Publication date: September 11, 2003
    Applicant: GenVec, Inc.
    Inventors: Duncan L. McVey, Douglas E. Brough, Mohammed Zuber, Imre Kovesdi
  • Patent number: 6573092
    Abstract: The inventive method of producing a eukaryotic viral vector comprises contacting a eukaryotic cell, which comprises a unique enzyme that nicks or cleaves a DNA molecule, with a recombinant phage vector, or contacting a eukaryotic cell, which does not comprise a unique enzyme that nicks or cleaves a DNA molecule, simultaneously or sequentially, in either order, with (i) a unique enzyme that nicks or cleaves a DNA molecule, and (ii) a recombinant phage vector. The recombinant phage vector comprises the DNA molecule comprising (a) a eukaryotic viral vector genome comprising a coding sequence, (b) a phage packaging site that is not contained within the eukaryotic viral vector genome, and (c) a promoter that is operably linked to the coding sequence.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: June 3, 2003
    Assignee: GenVec, Inc.
    Inventors: Imre Kovesdi, Duncan L. McVey
  • Publication number: 20030045498
    Abstract: The present invention is directed to a method of prophylactically or therapeutically treating an animal for at least one ocular-related disorder, e.g., ocular neovascularization or age-related macular degeneration. The method comprises contacting an ocular cell with an expression vector comprising a nucleic acid sequence encoding an inhibitor of angiogenesis and the same or different nucleic acid sequence encoding a neurotrophic agent. The method also can comprise contacting an ocular cell with different expression vectors, each comprising a nucleic acid sequence encoding an inhibitor of angiogenesis and/or a nucleic acid sequence encoding a neurotrophic agent. In addition, the present invention provides a viral vector comprising a nucleic acid sequence encoding pigment epithelium-derived factor (PEDF) or a therapeutic fragment thereof.
    Type: Application
    Filed: August 2, 2002
    Publication date: March 6, 2003
    Applicant: GenVec, Inc.
    Inventors: Imre Kovesdi, Douglas E. Brough, Lisa Wei, Duncan L. McVey
  • Patent number: 6482616
    Abstract: The present invention provides multiply deficient adenoviral vectors and complementing cell lines. Also provided are recombinants of the multiply deficient adenoviral vectors and a therapeutic method, particularly relating to gene therapy, vaccination, and the like, involving the use of such recombinants.
    Type: Grant
    Filed: May 27, 1999
    Date of Patent: November 19, 2002
    Assignee: GenVec, Inc.
    Inventors: Imre Kovesdi, Douglas E. Brough, Duncan L. McVey, Joseph T. Bruder, Alena Lizonova