Patents by Inventor Duncan Paul ROBERTSON

Duncan Paul ROBERTSON has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10311282
    Abstract: Region of interest detection in raw time of flight images is described. For example, a computing device receives at least one raw image captured for a single frame by a time of flight camera. The raw image depicts one or more objects in an environment of the time of flight camera (such as human hands, bodies or any other objects). The raw image is input to a trained region detector and in response one or more regions of interest in the raw image are received. A received region of interest comprises image elements of the raw image which are predicted to depict at least part of one of the objects. A depth computation logic computes depth from the one or more regions of interest of the raw image.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: June 4, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Jamie Daniel Joseph Shotton, Cem Keskin, Christoph Rhemann, Toby Sharp, Duncan Paul Robertson, Pushmeet Kohli, Andrew William Fitzgibbon, Shahram Izadi
  • Patent number: 10037618
    Abstract: Images of foreground objects in a scene are generated by causing electromagnetic radiation to be emitted having a first spectral power distribution from a surface of a first foreground object, which is adjacent or at least partially obscured by a second foreground object. A first image of both of the first and second foreground objects is acquired while the first foreground object emits electromagnetic radiation with the first spectral power distribution. A second image of the first and second foreground objects is acquired while the first foreground object is not emitting electromagnetic radiation or is emitting electromagnetic radiation with a second spectral power distribution which is different to the first spectral power distribution. An alpha matte of the first and second foreground objects is generated based on a comparison of the first image and second image.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: July 31, 2018
    Assignee: METAIL LIMITED
    Inventor: Duncan Paul Robertson
  • Patent number: 9911032
    Abstract: Tracking hand or body pose from image data is described, for example, to control a game system, natural user interface or for augmented reality. In various examples a prediction engine takes a single frame of image data and predicts a distribution over a pose of a hand or body depicted in the image data. In examples, a stochastic optimizer has a pool of candidate poses of the hand or body which it iteratively refines, and samples from the predicted distribution are used to replace some candidate poses in the pool. In some examples a best candidate pose from the pool is selected as the current tracked pose and the selection processes uses a 3D model of the hand or body.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: March 6, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Jamie Daniel Joseph Shotton, Cem Keskin, Jonathan Taylor, Toby Sharp, Shahram Izadi, Andrew William Fitzgibbon, Pushmeet Kohli, Duncan Paul Robertson
  • Publication number: 20170372126
    Abstract: Region of interest detection in raw time of flight images is described. For example, a computing device receives at least one raw image captured for a single frame by a time of flight camera. The raw image depicts one or more objects in an environment of the time of flight camera (such as human hands, bodies or any other objects). The raw image is input to a trained region detector and in response one or more regions of interest in the raw image are received. A received region of interest comprises image elements of the raw image which are predicted to depict at least part of one of the objects. A depth computation logic computes depth from the one or more regions of interest of the raw image.
    Type: Application
    Filed: September 11, 2017
    Publication date: December 28, 2017
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Jamie Daniel Joseph SHOTTON, Cem KESKIN, Christoph RHEMANN, Toby SHARP, Duncan Paul ROBERTSON, Pushmeet KOHLI, Andrew William FITZGIBBON, Shahram IZADI
  • Patent number: 9773155
    Abstract: Region of interest detection in raw time of flight images is described. For example, a computing device receives at least one raw image captured for a single frame by a time of flight camera. The raw image depicts one or more objects in an environment of the time of flight camera (such as human hands, bodies or any other objects). The raw image is input to a trained region detector and in response one or more regions of interest in the raw image are received. A received region of interest comprises image elements of the raw image which are predicted to depict at least part of one of the objects. A depth computation logic computes depth from the one or more regions of interest of the raw image.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: September 26, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Jamie Daniel Joseph Shotton, Cem Keskin, Christoph Rhemann, Toby Sharp, Duncan Paul Robertson, Pushmeet Kohli, Andrew William Fitzgibbon, Shahram Izadi
  • Patent number: 9710730
    Abstract: Image registration is described. In an embodiment an image registration system executes automatic registration of images, for example medical images. In an example, semantic information is computed for each of the images to be registered comprising information about the types of objects in the images and the certainty of that information. In an example a mapping is found to register the images which takes into account the intensities of the image elements as well as the semantic information in a manner which is weighted by the certainty of that semantic information. For example, the semantic information is computed by estimating posterior distributions for the locations of anatomical structures by using a regression forest and transforming the posterior distributions into a probability map. In an example the mapping is found as a global point of inflection of an energy function, the energy function having a term related to the semantic information.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: July 18, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Ender Konukoglu, Sayan Pathak, Khan Mohammad Siddiqui, Antonio Criminisi, Steven White, Jamie Daniel Joseph Shotton, Duncan Paul Robertson
  • Publication number: 20170200297
    Abstract: Images of foreground objects in a scene are generated by causing electromagnetic radiation to be emitted having a first spectral power distribution from a surface of a first foreground object, which is adjacent or at least partially obscured by a second foreground object. A first image of both of the first and second foreground objects is acquired whilst the first foreground object emits electromagnetic radiation with the first spectral power distribution. A second image of the first and second foreground objects is acquired whilst the first foreground object is not emitting electromagnetic radiation or is emitting electromagnetic radiation with a second spectral power distribution which is different to the first spectral power distribution. An alpha matte of the first and second foreground objects is generated based on a comparison of the first image and second image.
    Type: Application
    Filed: January 19, 2017
    Publication date: July 13, 2017
    Applicant: METAIL LIMITED
    Inventor: Duncan Paul ROBERTSON
  • Publication number: 20170116471
    Abstract: Tracking hand or body pose from image data is described, for example, to control a game system, natural user interface or for augmented reality. In various examples a prediction engine takes a single frame of image data and predicts a distribution over a pose of a hand or body depicted in the image data. In examples, a stochastic optimizer has a pool of candidate poses of the hand or body which it iteratively refines, and samples from the predicted distribution are used to replace some candidate poses in the pool. In some examples a best candidate pose from the pool is selected as the current tracked pose and the selection processes uses a 3D model of the hand or body.
    Type: Application
    Filed: January 4, 2017
    Publication date: April 27, 2017
    Inventors: Jamie Daniel Joseph Shotton, Cem Keskin, Jonathan Taylor, Toby Sharp, Shahram Izadi, Andrew William Fitzgibbon, Pushmeet Kohli, Duncan Paul Robertson
  • Patent number: 9626766
    Abstract: A method of sensing depth using an RGB camera. In an example method, a color image of a scene is received from an RGB camera. The color image is applied to a trained machine learning component which uses features of the image elements to assign all or some of the image elements a depth value which represents the distance between the surface depicted by the image element and the RGB camera. In various examples, the machine learning component comprises one or more entangled geodesic random decision forests.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: April 18, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Antonio Criminisi, Duncan Paul Robertson, Peter Kontschieder, Pushmeet Kohli, Henrik Turbell, Adriana Dumitras, Indeera Munasinghe, Jamie Daniel Joseph Shotton
  • Patent number: 9591236
    Abstract: Images of foreground objects in a scene are generated by causing electromagnetic radiation to be emitted having a first spectral power distribution from a surface of a first foreground object, which is adjacent or at least partially obscured by a second foreground object. A first image of both of the first and second foreground objects is acquired while the first foreground object emits electromagnetic radiation with the first spectral power distribution. A second image of the first and second foreground objects is acquired while the first foreground object is not emitting electromagnetic radiation or is emitting electromagnetic radiation with a second spectral power distribution which is different to the first spectral power distribution. An alpha matte of the first and second foreground objects is generated based on a comparison of the first image and second image.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: March 7, 2017
    Assignee: METAIL LIMITED
    Inventor: Duncan Paul Robertson
  • Patent number: 9552070
    Abstract: Tracking hand or body pose from image data is described, for example, to control a game system, natural user interface or for augmented reality. In various examples a prediction engine takes a single frame of image data and predicts a distribution over a pose of a hand or body depicted in the image data. In examples, a stochastic optimizer has a pool of candidate poses of the hand or body which it iteratively refines, and samples from the predicted distribution are used to replace some candidate poses in the pool. In some examples a best candidate pose from the pool is selected as the current tracked pose and the selection processes uses a 3D model of the hand or body.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: January 24, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Jamie Daniel Joseph Shotton, Cem Keskin, Jonathan James Taylor, Toby Sharp, Shahram Izadi, Andrew William Fitzgibbon, Pushmeet Kohli, Duncan Paul Robertson
  • Patent number: 9380224
    Abstract: A method of sensing depth using an infrared camera. In an example method, an infrared image of a scene is received from an infrared camera. The infrared image is applied to a trained machine learning component which uses the intensity of image elements to assign all or some of the image elements a depth value which represents the distance between the surface depicted by the image element and the infrared camera. In various examples, the machine line component comprises one or more random decision forests.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: June 28, 2016
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Cem Keskin, Sean Ryan Francesco Fanello, Shahram Izadi, Pushmeet Kohli, David Kim, David Sweeney, Jamie Daniel Joseph Shotton, Duncan Paul Robertson, Sing Bing Kang
  • Publication number: 20160104031
    Abstract: Region of interest detection in raw time of flight images is described. For example, a computing device receives at least one raw image captured for a single frame by a time of flight camera. The raw image depicts one or more objects in an environment of the time of flight camera (such as human hands, bodies or any other objects). The raw image is input to a trained region detector and in response one or more regions of interest in the raw image are received. A received region of interest comprises image elements of the raw image which are predicted to depict at least part of one of the objects. A depth computation logic computes depth from the one or more regions of interest of the raw image.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 14, 2016
    Inventors: Jamie Daniel Joseph Shotton, Cem Keskin, Christoph Rhemann, Toby Sharp, Duncan Paul Robertson, Pushmeet Kohli, Andrew William Fitzgibbon, Shahram Izadi
  • Publication number: 20160086025
    Abstract: Tracking pose of an articulated entity from image data is described, for example, to control a game system, natural user interface or for augmented reality. In various examples a plurality of threads execute on a parallel computing unit, each thread processing data from an individual frame of a plurality of frames of image data captured by an image capture device. In examples, each thread is computing an iterative optimization process whereby a pool of partially optimized candidate poses is being updated. In examples, one or more candidate poses from an individual thread are sent to one or more of the other threads and used to replace or add to candidate poses at the receiving thread(s).
    Type: Application
    Filed: September 23, 2014
    Publication date: March 24, 2016
    Inventors: Jamie Daniel Joseph Shotton, Toby Sharp, Duncan Paul Robertson, Andrew William Fitzgibbon
  • Publication number: 20160086349
    Abstract: Tracking hand pose from image data is described, for example, to control a natural user interface or for augmented reality. In various examples an image is received from a capture device, the image depicting at least one hand in an environment. For example, a hand tracker accesses a 3D model of a hand and forearm and computes pose of the hand depicted in the image by comparing the 3D model with the received image.
    Type: Application
    Filed: September 23, 2014
    Publication date: March 24, 2016
    Inventors: Jamie Daniel Joseph Shotton, Duncan Paul Robertson, Jonathan James Taylor, Cem Keskin, Shahram Izadi, Andrew William Fitzgibbon
  • Publication number: 20160085310
    Abstract: Tracking hand or body pose from image data is described, for example, to control a game system, natural user interface or for augmented reality. In various examples a prediction engine takes a single frame of image data and predicts a distribution over a pose of a hand or body depicted in the image data. In examples, a stochastic optimizer has a pool of candidate poses of the hand or body which it iteratively refines, and samples from the predicted distribution are used to replace some candidate poses in the pool. In some examples a best candidate pose from the pool is selected as the current tracked pose and the selection processes uses a 3D model of the hand or body.
    Type: Application
    Filed: September 23, 2014
    Publication date: March 24, 2016
    Inventors: Jamie Daniel Joseph Shotton, Cem Keskin, Jonathan James Taylor, Toby Sharp, Shahram Izadi, Andrew William Fitzgibbon, Pushmeet Kohli, Duncan Paul Robertson
  • Publication number: 20150248765
    Abstract: A method of sensing depth using an RGB camera. In an example method, a color image of a scene is received from an RGB camera. The color image is applied to a trained machine learning component which uses features of the image elements to assign all or some of the image elements a depth value which represents the distance between the surface depicted by the image element and the RGB camera. In various examples, the machine learning component comprises one or more entangled geodesic random decision forests.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 3, 2015
    Applicant: Microsoft Corporation
    Inventors: Antonio Criminisi, Duncan Paul Robertson, Peter Kontschieder, Pushmeet Kohli, Henrik Turbell, Adriana Dumitras, Indeera Munasinghe, Jamie Daniel Joseph Shotton
  • Publication number: 20150248764
    Abstract: A method of sensing depth using an infrared camera. In an example method, an infrared image of a scene is received from an infrared camera. The infrared image is applied to a trained machine learning component which uses the intensity of image elements to assign all or some of the image elements a depth value which represents the distance between the surface depicted by the image element and the infrared camera. In various examples, the machine line component comprises one or more random decision forests.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 3, 2015
    Inventors: Cem Keskin, Sean Ryan Francesco Fanello, Shahram Izadi, Pushmeet Kohli, David Kim, David Sweeney, Jamie Daniel Joesph Shotton, Duncan Paul Robertson, Sing Bing Kang
  • Patent number: 8867802
    Abstract: Automatic organ localization is described. In an example, an organ in a medical image is localized using one or more trained regression trees. Each image element of the medical image is applied to the trained regression trees to compute probability distributions that relate to a distance from each image element to the organ. At least a subset of the probability distributions are selected and aggregated to calculate a localization estimate for the organ. In another example, the regression trees are trained using training images having a predefined organ location. At each node of the tree, test parameters are generated that determine which subsequent node each training image element is passed to. This is repeated until each image element reaches a leaf node of the tree. A probability distribution is generated and stored at each leaf node, based on the distance from the leaf node's image elements to the organ.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: October 21, 2014
    Assignee: Microsoft Corporation
    Inventors: Antonio Criminisi, Jamie Daniel Joseph Shotton, Duncan Paul Robertson, Sayan D. Pathak, Steven James White, Khan Mohammed Siddiqui
  • Patent number: 8605148
    Abstract: Images of foreground objects in a scene are generated by causing electromagnetic radiation to be emitted having a first spectral power distribution from a surface of a first foreground object, which is adjacent or at least partially obscured by a second foreground object. A first image of both of the first and second foreground objects is acquired while the first foreground object emits electromagnetic radiation with the first spectral power distribution. A second image of the first and second foreground objects is acquired while the first foreground object is not emitting electromagnetic radiation or is emitting electromagnetic radiation with a second spectral power distribution which is different to the first spectral power distribution. An alpha matte of the first and second foreground objects is generated based on a comparison of the first image and second image.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: December 10, 2013
    Assignee: Metail Limited
    Inventor: Duncan Paul Robertson