Patents by Inventor Durgesh Vaidya

Durgesh Vaidya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230384513
    Abstract: An optical fiber cable comprises an inner tube with strength members that are located external to, and alongside of, the inner tube. Water-blocking material is also located external to the inner tube. A sheath surrounds the strength members and the water-blocking material. The cable further comprises an optical fiber with a core, a trench surrounding the core, a cladding surrounding the trench, and a coating applied over the cladding. The cable comprises a fiber arrangement with N optical fibers (with N being an integer (e.g., 16, 32, 48, 96, etc.), of which at least one optical fiber has: a maximum effective area (Aeff) of approximately seventy-five square micrometers (˜75 ?m2) at a wavelength (?) of approximately 1550 nanometers (˜1550 nm); a maximum mode field diameter (MFD) of ˜8.8 ?m at ? of ˜1550 nm; a maximum cable cut-off ? of ˜1520 nm; and, a maximum attenuation of ˜0.180 decibels-per-kilometer (dB/km) at ? of ˜1550 nm.
    Type: Application
    Filed: October 18, 2021
    Publication date: November 30, 2023
    Applicant: OFS Fitel, LLC
    Inventors: David W Peckham, Durgesh Vaidya, Peter A Weimann
  • Patent number: 9709732
    Abstract: Described is a technique for the design and manufacture of MMFs. Designs are implemented so as to limit the maximum variation in z(r, ?) with respect to wavelength, where z(r, ?) is the dielectric constant weighted by the square of the wavelength. MMFs for use in CWDM applications are specifically described.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: July 18, 2017
    Assignee: OFS FITEL, LLC
    Inventors: Kasyapa Balemarthy, James W Fleming, Jinkee Kim, Robert L Lingle, Jr., Roman Shubochkin, Durgesh Vaidya, Man F Yan
  • Publication number: 20160370540
    Abstract: Described is a technique for the design and manufacture of MMFs. Designs are implemented so as to limit the maximum variation in z(r, ?) with respect to wavelength, where z(r, ?) is the dielectric constant weighted by the square of the wavelength. MMFs for use in CWDM applications are specifically described.
    Type: Application
    Filed: January 30, 2015
    Publication date: December 22, 2016
    Applicant: OFS Fitel, LLC
    Inventors: Kasyapa Balemarthy, James W Fleming, Jinkee Kim, Robert L Lingle, Jr., Roman Shubochkin, Durgesh Vaidya, Man F Yan
  • Publication number: 20140270670
    Abstract: The specification describes multimode optical fibers with specific design parameters, i.e., controlled refractive index design ratios and dimensions, which render the optical fibers largely immune to moderately severe bends. The modal structure in the optical fibers is also largely unaffected by bending, thus leaving the optical fiber bandwidth essentially unimpaired. Bend performance results were established by DMD measurements of fibers wound on mandrels vs. measurements of fibers with no severe bends.
    Type: Application
    Filed: July 29, 2013
    Publication date: September 18, 2014
    Inventors: Xinli Jiang, Jinkee Kim, George E Oulundsen, Durgesh Vaidya, Man F Yan
  • Publication number: 20130323414
    Abstract: Adverse hydrogen aging limitations in multiply-doped optical fibers are overcome by passivating these optical fibers using a deuterium passivation process. This treatment essentially pre-reacts the glass with deuterium so that the most active glass sites are no longer available to react with hydrogen in service. Optical fibers of main interest are doped with mixtures of germanium and phosphorus. Optimum passivating process conditions are described.
    Type: Application
    Filed: May 21, 2013
    Publication date: December 5, 2013
    Applicant: OFS FITEL, LLC
    Inventors: David John DiGiovanni, Robert L. Lingle, Michael J. LuValle, George E. Oulundsen, Durgesh Vaidya
  • Publication number: 20110188822
    Abstract: Certain embodiments of the invention may include systems and methods for providing optical fiber coatings to reduce microbend losses. According to an example embodiment of the invention, a method is provided for coating an optical fiber to reduce microbend losses and polarization mode dispersion (PMD). The method includes applying a primary layer to the optical fiber, wherein the optical fiber comprises a core region surrounded by a cladding region. The method includes applying a secondary layer to the primary layer, and curing the primary and secondary layers, wherein the cured primary layer adheres to the cladding region with a minimum pullout adhesion of 6 N/cm, and the cured secondary layer has an in situ modulus of about 700 MPa to about 1200 MPa at room temperature.
    Type: Application
    Filed: February 4, 2010
    Publication date: August 4, 2011
    Applicant: OFS FITEL, LLC
    Inventors: Kariofilis Konstadinidis, Harry Garner, Peter Haslov, Jinkee Kim, Debra Simoff, Durgesh Vaidya, Yoshihiro Arashitani