Patents by Inventor Dustin E. Kruse

Dustin E. Kruse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11860273
    Abstract: Techniques, systems, and devices are disclosed for spatial and temporal encoding of transmission in full synthetic transmit aperture imaging to achieve optimal spatial and contrast resolution and large signal-to-noise ratio for medical imaging applications with fewer signal transmissions, which can be equal to or less than the number of array elements within the aperture. In some aspects, a method of signal transmission is disclosed that includes a sequence of one or more sets of transmissions on a plurality of elements with unique, random, and/or optimized combinations of waveforms using amplitude and phase, and/or delay encoding. Sets of echoes corresponding to the sequence are beamformed such that fewer transmissions are needed than the number of array elements within the aperture, while maintaining complete spatial sampling of the aperture as if sampled according to a full set of synthetic transmit aperture transmissions on the same aperture.
    Type: Grant
    Filed: October 27, 2018
    Date of Patent: January 2, 2024
    Assignee: DECISION SCIENCES MEDICAL COMPANY, LLC
    Inventor: Dustin E. Kruse
  • Publication number: 20230089137
    Abstract: Techniques, systems, and devices are disclosed for synthetic aperture ultrasound imaging using a beamformer that incorporates a model of the object. In some aspects, a system includes an array of transducers to transmit and/or receive acoustic signals at an object that forms a synthetic aperture of the system with the object, an object beamformer unit to (i) beamform the object coherently as a function of position, orientation, and/or geometry of the transducers with respect to a model of the object, and (ii) produce a beamformed output signal including spatial information about the object derived from beamforming the acoustic echoes; a data processing unit to process data and produce an image of the object based on a rendition of the position, the orientation, the geometry, and/or the surface properties of the object, relative to the coordinate system of the array, as determined by the data processing unit.
    Type: Application
    Filed: November 21, 2022
    Publication date: March 23, 2023
    Inventor: Dustin E. Kruse
  • Publication number: 20230052016
    Abstract: Systems, devices, and methods for sparse synthetic aperture ultrasound (SSAU) imaging and/or range-Doppler applications are described. An example method for SAU imaging includes receiving, via a user interface, an input including an array topology comprising a particular N-dimensional arrangement of a plurality of transducer elements of the SAU system, an objective space, a function characterizing an imaging capability of the SAU system, and one or more constraints, generating, based on the input, an acoustic field over the objective space for each of the plurality of transducer elements of the array topology, selecting one or more transducer elements from the plurality of transducer elements of the array topology based on evaluation of the function, and providing for display, on the user interface, the selected one or more transducer elements that satisfy each of the one or more constraints.
    Type: Application
    Filed: August 4, 2022
    Publication date: February 16, 2023
    Inventor: Dustin E. Kruse
  • Patent number: 11520043
    Abstract: Techniques, systems, and devices are disclosed for synthetic aperture ultrasound imaging using a beamformer that incorporates a model of the object. In some aspects, a system includes an array of transducers to transmit and/or receive acoustic signals at an object that forms a synthetic aperture of the system with the object, an object beamformer unit to (i) beamform the object coherently as a function of position, orientation, and/or geometry of the transducers with respect to a model of the object, and (ii) produce a beamformed output signal including spatial information about the object derived from beamforming the acoustic echoes; a data processing unit to process data and produce an image of the object based on a rendition of the position, the orientation, the geometry, and/or the surface properties of the object, relative to the coordinate system of the array, as determined by the data processing unit.
    Type: Grant
    Filed: January 21, 2022
    Date of Patent: December 6, 2022
    Assignee: Decision Sciences Medical Company, LLC
    Inventor: Dustin E. Kruse
  • Publication number: 20220155440
    Abstract: Techniques, systems, and devices are disclosed for synthetic aperture ultrasound imaging using a beamformer that incorporates a model of the object. In some aspects, a system includes an array of transducers to transmit and/or receive acoustic signals at an object that forms a synthetic aperture of the system with the object, an object beamformer unit to (i) beamform the object coherently as a function of position, orientation, and/or geometry of the transducers with respect to a model of the object, and (ii) produce a beamformed output signal including spatial information about the object derived from beamforming the acoustic echoes; a data processing unit to process data and produce an image of the object based on a rendition of the position, the orientation, the geometry, and/or the surface properties of the object, relative to the coordinate system of the array, as determined by the data processing unit.
    Type: Application
    Filed: January 21, 2022
    Publication date: May 19, 2022
    Inventor: Dustin E. Kruse
  • Publication number: 20210361259
    Abstract: Disclosed are articles, devices and systems providing a semi-rigid acoustic coupling medium for ultrasound diagnostic and treatment techniques. In some aspects, an acoustic coupling article includes a semi-rigid acoustic coupling medium (SACM) able to conform to a receiving body through deformation of the SACM body in order to propagate an acoustic signal within the SACM to and from the receiving body. In some embodiments, the SACM is configured in a shape having one or more attachment portions located at one end of an acoustic interface portion, such that the acoustic interface portion is operable to contact the receiving body to propagate the acoustic signal and the attachment portions are configured to be secured by an acoustic probe device to transmit and receive the propagated acoustic signal.
    Type: Application
    Filed: August 9, 2021
    Publication date: November 25, 2021
    Inventors: Allan Wegner, Dustin E. Kruse, James J. Hayes, Zachary Staebler
  • Patent number: 11154274
    Abstract: Disclosed are articles, devices and systems providing a semi-rigid acoustic coupling medium for ultrasound diagnostic and treatment techniques. In some aspects, an acoustic coupling article includes a semi-rigid acoustic coupling medium (SACM) able to conform to a receiving body through deformation of the SACM body in order to propagate an acoustic signal within the SACM to and from the receiving body. In some embodiments, the SACM is configured in a shape having one or more attachment portions located at one end of an acoustic interface portion, such that the acoustic interface portion is operable to contact the receiving body to propagate the acoustic signal and the attachment portions are configured to be secured by an acoustic probe device to transmit and receive the propagated acoustic signal.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: October 26, 2021
    Assignee: Decision Sciences Medical Company, LLC
    Inventors: Allan Wegner, Dustin E. Kruse, James J. Hayes, Zachary Staebler
  • Publication number: 20200337674
    Abstract: Disclosed are articles, devices and systems providing a semi-rigid acoustic coupling medium for ultrasound diagnostic and treatment techniques. In some aspects, an acoustic coupling article includes a semi-rigid acoustic coupling medium (SACM) able to conform to a receiving body through deformation of the SACM body in order to propagate an acoustic signal within the SACM to and from the receiving body. In some embodiments, the SACM is configured in a shape having one or more attachment portions located at one end of an acoustic interface portion, such that the acoustic interface portion is operable to contact the receiving body to propagate the acoustic signal and the attachment portions are configured to be secured by an acoustic probe device to transmit and receive the propagated acoustic signal.
    Type: Application
    Filed: April 23, 2020
    Publication date: October 29, 2020
    Inventors: Allan Wegner, Dustin E. Kruse, James J. Hayes, Zachary Staebler
  • Publication number: 20200284902
    Abstract: Techniques, systems, and devices are disclosed for spatial and temporal encoding of transmission in full synthetic transmit aperture imaging to achieve optimal spatial and contrast resolution and large signal-to-noise ratio for medical imaging applications with fewer signal transmissions, which can be equal to or less than the number of array elements within the aperture. In some aspects, a method of signal transmission is disclosed that includes a sequence of one or more sets of transmissions on a plurality of elements with unique, random, and/or optimized combinations of waveforms using amplitude and phase, and/or delay encoding. Sets of echoes corresponding to the sequence are beamformed such that fewer transmissions are needed than the number of array elements within the aperture, while maintaining complete spatial sampling of the aperture as if sampled according to a full set of synthetic transmit aperture transmissions on the same aperture.
    Type: Application
    Filed: October 27, 2018
    Publication date: September 10, 2020
    Inventor: Dustin E. Kruse
  • Publication number: 20100068260
    Abstract: A composition coupled to an agent with a cleavable linker is provided. Specifically, the composition is used for releasing the agent through a temperature-sensitive mechanism at a targeted location in a subject with heat. It is advantageous to applications where there is a need to accurately deploy an agent in a targeted location to reduce adverse side effects or increase efficacy of the agent. A device and method for providing heat at the targeted location in the subject is also provided. The device and method allows release of the agents in a targeted manner and prevents overheating of the targeted location or the tissue surrounding the targeted location. It is advantageous to applications where there is a need to accurately control the temperature in a targeted location in a biological body, for instance, to deploy an agent in the targeted location.
    Type: Application
    Filed: July 23, 2009
    Publication date: March 18, 2010
    Inventors: Dustin E. Kruse, Claude Meares, Katherine W. Ferrara, Eric Paoli, Douglas N. Stephens, Jeffrey Day
  • Patent number: 6547731
    Abstract: A method for assessing blood flow in a tissue involving directing a beam through the tissue along overlapping lines of sight and then generating the blood flow data from where the ultrasonic beams overlap to evaluate blood flow in the tissue. More specifically, spatially overlapping beams are generated at a fixed temporal intervals. Spatial overlap allows the spatial distance between overlapping lines-of-sight to be ignored, while moving reflectors within any overlapping line-of-sight will cause detectable changes in range of the moving reflector from one line-of-sight to the next. The rate of motion is determined from the measured change in range and the known time interval between vectors. Processing of data includes alignment of data between lines-of-sight to suppress artifactual motion and a wall filter for isolation of flow-data from stationary structures. An apparatus for assessing blood flow includes a transmission system and a storage system.
    Type: Grant
    Filed: May 5, 1999
    Date of Patent: April 15, 2003
    Assignees: Cornell Research Foundation, Inc., University of Virginia Patent Foundation
    Inventors: D. Jackson Coleman, Katherine W. Ferrara, Dustin E. Kruse, Ronald H. Silverman