Patents by Inventor Dustin Hess

Dustin Hess has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190310309
    Abstract: Systems, methods, and devices for monitoring operation of industrial equipment are disclosed. In one embodiment, a monitoring system is provided that includes a passive backplane and one more functional circuits that can couple to the backplane. Each of the functional circuits that are coupled to the backplane can have access to all data that is delivered to the backplane. Therefore, resources (e.g., computing power, or other functionality) from each functional circuits can be shared by all active functional circuits that are coupled to the backplane. Because resources from each of the functional circuits can be shared, and because the functional circuits can be detachably coupled to the backplane, performance of the monitoring systems can be tailored to specific applications. For example, processing power can be increased by coupling additional processing circuits to the backplane.
    Type: Application
    Filed: April 6, 2018
    Publication date: October 10, 2019
    Inventors: Michael Alan Tart, Steven Thomas Clemens, Dustin Hess, Paul Richetta
  • Publication number: 20190310308
    Abstract: Systems, methods, and devices for monitoring operation of industrial equipment are disclosed. In one embodiment, a monitoring system is provided that includes a passive backplane and one more functional circuits that can couple to the backplane. Each of the functional circuits that are coupled to the backplane can have access to all data that is delivered to the backplane. Therefore, resources (e.g., computing power, or other functionality) from each functional circuits can be shared by all active functional circuits that are coupled to the backplane. Because resources from each of the functional circuits can be shared, and because the functional circuits can be detachably coupled to the backplane, performance of the monitoring systems can be tailored to specific applications. For example, processing power can be increased by coupling additional processing circuits to the backplane.
    Type: Application
    Filed: April 6, 2018
    Publication date: October 10, 2019
    Inventors: Dustin Hess, Steven Thomas Clemens
  • Publication number: 20190310312
    Abstract: A flexible monitoring system and corresponding methods of use are provided. The system can include a base containing backplane, and one or more monitoring circuits. The monitoring circuits can be designed with a common architecture that is programmable to perform different predetermined functions. As a result, monitoring circuits can be shared between different implementations of the flexible monitoring system. Multiple bases that can be communicatively coupled in a manner that establishes a common backplane between respective bases that is formed from the individual backplanes of each base. Each monitoring circuit is not limited to sending data to and/or receiving data from the backplane to which it is physically coupled but can instead can communicate along the common backplane. Computational processing capacity can be increased or decreased independently of input signals received by addition or removal of processing circuits from the monitoring system.
    Type: Application
    Filed: April 6, 2018
    Publication date: October 10, 2019
    Inventors: Dustin Hess, Michael Alan Tart
  • Publication number: 20190310928
    Abstract: In one embodiment, a portable monitoring system can include a secondary bus and a first monitoring circuit detachably coupled to the secondary bus. The first monitoring circuit can be configured to receive, from a first bus via a node comprising one or more gates, a first beacon packet of a monitoring system of an industrial machine. The first beacon packet can include a first system frame schedule indicative of a plurality of time slices during which a plurality of data packets can be configured to be broadcasted on the first bus of the monitoring system. The first monitoring circuit can also be configured to determine, a first set of time slices of the plurality of time slices during which a first set of data packets including data characterizing one or more predetermined operating parameters are broadcasted on the first bus.
    Type: Application
    Filed: April 6, 2018
    Publication date: October 10, 2019
    Inventors: Dustin Hess, Michael Alan Tart, Paul Richetta, Curtis Hoffman, Raymond Jensen
  • Publication number: 20190310619
    Abstract: Systems, methods, and devices for monitoring operation of industrial equipment are disclosed. In one embodiment, a monitoring system is provided that includes a passive backplane and one more functional circuits that can couple to the backplane. Each of the functional circuits that are coupled to the backplane can have access to all data that is delivered to the backplane. Therefore, resources (e.g., computing power, or other functionality) from each functional circuits can be shared by all active functional circuits that are coupled to the backplane. Because resources from each of the functional circuits can be shared, and because the functional circuits can be detachably coupled to the backplane, performance of the monitoring systems can be tailored to specific applications. For example, processing power can be increased by coupling additional processing circuits to the backplane.
    Type: Application
    Filed: April 6, 2018
    Publication date: October 10, 2019
    Inventors: Steven Thomas Clemens, Dustin Hess
  • Publication number: 20190310311
    Abstract: A flexible monitoring system and corresponding methods of use are provided. The system can include a base containing backplane, and one or more circuits communicatively coupled to the backplane. The circuits can be designed with a common architecture that is programmable to perform different predetermined functions, such as input, output, and processing. By separating functions of the flexible monitoring system into different circuits, new implementations of the flexible monitoring system can be rapidly developed by arranging already created components in different combinations. Multiple bases can also be communicatively coupled in a manner that establishes a common backplane between respective bases. Accordingly, implementations of the flexible monitoring system distribute combinations of circuits across different bases, providing flexible deployment options.
    Type: Application
    Filed: April 6, 2018
    Publication date: October 10, 2019
    Inventors: Michael Alan Tart, Daniel Abawi, Curtis Hoffman, Paul Richetta, Dustin Hess
  • Publication number: 20190310607
    Abstract: In one embodiment, a condition monitoring circuit can include a circuit controller and a node. The node can include a gate controller, a node controller and one or more gates. The node can be configured to detachably couple to a bus of a monitoring system associated with an industrial machine. The circuit controller can be configured to identify an operating parameter associated with the industrial machine. The gate controller can be configured to transfer, via the one or more gates, one or more data packets including data characterizing the operating parameter from the bus in the monitoring system. The one or more gates can be configured to prevent transfer of an outgoing data packet to the bus via the node.
    Type: Application
    Filed: April 6, 2018
    Publication date: October 10, 2019
    Inventors: Michael Alan Tart, Raymond Jensen, Steven Thomas Clemens, Dustin Hess