Patents by Inventor Dustin M. Salentiny

Dustin M. Salentiny has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160260331
    Abstract: A framework for combining a weather risk analysis with appropriate operational rules includes a data initialization component, a rules processing component, and one or more weather risk analysis and assessment tools to evaluate a flight condition. The framework applies current, historical, predicted and forecasted weather data to the one or more operational rules governing a mission, a payload, a flight plan, a craft type, and a location of the mission for aircraft such as an unmanned aerial vehicle or remotely-piloted vehicle, and generates advisories based on the evaluation of flight conditions such as a mission compliance status, instructions for operation of unmanned aircraft, and management advisories. The flight condition advisories include either a “fly” advisory or a “no-fly” advisory, and the framework may also provide a mission prioritization and optimization system.
    Type: Application
    Filed: February 1, 2016
    Publication date: September 8, 2016
    Inventors: DUSTIN M. SALENTINY, JOHN J. MEWES
  • Publication number: 20160247076
    Abstract: A framework for diagnosing and predicting a suitability of soil conditions to various agricultural operations is performed in a combined, multi-part approach for simulating relationships between predictive data and observable outcomes. The framework includes analyzing one or more factors relevant to field trafficability, workability, and suitability for agricultural operations due to the effects of freezing and thawing cycles, and developing artificial intelligence systems to learn relationships between datasets to produce improved indications of trafficability, workability, and forecasts of suitability windows for a particular user, user community, farm, farm group, field, or equipment. The framework also includes a real-time feedback mechanism by which a user can validate or correct these indications and forecasts. The framework may further be configured to override one or more of the soil state assessments to ensure that indicators and forecasts are consistent with the recently-provided feedback.
    Type: Application
    Filed: February 20, 2016
    Publication date: August 25, 2016
    Inventors: JOHN J. MEWES, DUSTIN M. SALENTINY
  • Publication number: 20160247079
    Abstract: A framework for diagnosing and predicting a suitability of soil conditions to various agricultural operations is performed in a combined, multi-part approach for simulating relationships between predictive data and observable outcomes. The framework includes analyzing one or more factors relevant to field trafficability, workability, and suitability for agricultural operations due to the effects of freezing and thawing cycles, and developing artificial intelligence systems to learn relationships between datasets to produce improved indications of trafficability, workability, and forecasts of suitability windows for a particular user, user community, farm, farm group, field, or equipment. The framework also includes a real-time feedback mechanism by which a user can validate or correct these indications and forecasts. The framework may further be configured to override one or more of the soil state assessments to ensure that indicators and forecasts are consistent with the recently-provided feedback.
    Type: Application
    Filed: February 20, 2016
    Publication date: August 25, 2016
    Inventors: JOHN J. MEWES, DUSTIN M. SALENTINY
  • Publication number: 20160247075
    Abstract: A framework for diagnosing and predicting a suitability of soil conditions to various agricultural operations is performed in a combined, multi-part approach for simulating relationships between predictive data and observable outcomes. The framework includes analyzing one or more factors relevant to field trafficability, workability, and suitability for agricultural operations due to the effects of freezing and thawing cycles, and developing artificial intelligence systems to learn relationships between datasets to produce improved indications of trafficability, workability, and forecasts of suitability windows for a particular user, user community, farm, farm group, field, or equipment. The framework also includes a real-time feedback mechanism by which a user can validate or correct these indications and forecasts. The framework may further be configured to override one or more of the soil state assessments to ensure that indicators and forecasts are consistent with the recently-provided feedback.
    Type: Application
    Filed: February 20, 2016
    Publication date: August 25, 2016
    Inventors: JOHN J. MEWES, DUSTIN M. SALENTINY
  • Publication number: 20160225263
    Abstract: A framework for combining a weather risk analysis with appropriate operational rules includes a data initialization component, a rules processing component, and one or more weather risk analysis and assessment tools to evaluate a flight condition. The framework applies current, historical, predicted and forecasted weather data to the one or more operational rules governing a mission, a payload, a flight plan, a craft type, and a location of the mission for aircraft such as an unmanned aerial vehicle or remotely-piloted vehicle, and generates advisories based on the evaluation of flight conditions such as a mission compliance status, instructions for operation of unmanned aircraft, and management advisories. The flight condition advisories include either a “fly” advisory or a “no-fly” advisory, and the framework may also provide a mission prioritization and optimization system.
    Type: Application
    Filed: February 1, 2016
    Publication date: August 4, 2016
    Inventors: DUSTIN M. SALENTINY, JOHN J. MEWES
  • Publication number: 20160217230
    Abstract: A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analyses.
    Type: Application
    Filed: November 25, 2015
    Publication date: July 28, 2016
    Inventors: JOHN J. MEWES, DUSTIN M. SALENTINY, DANE T. KUPER, DUSTIN C. BALSLEY
  • Publication number: 20160217229
    Abstract: A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analyses.
    Type: Application
    Filed: November 25, 2015
    Publication date: July 28, 2016
    Inventors: JOHN J. MEWES, DUSTIN M. SALENTINY, DANE T. KUPER, DUSTIN C. BALSLEY
  • Publication number: 20160215994
    Abstract: A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analyses.
    Type: Application
    Filed: September 2, 2015
    Publication date: July 28, 2016
    Inventors: JOHN J. MEWES, DUSTIN M. SALENTINY
  • Publication number: 20160217231
    Abstract: A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analyses.
    Type: Application
    Filed: November 25, 2015
    Publication date: July 28, 2016
    Inventors: JOHN J. MEWES, DUSTIN M. SALENTINY, DANE T. KUPER, DUSTIN C. BALSLEY
  • Publication number: 20160217228
    Abstract: A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analyses.
    Type: Application
    Filed: November 25, 2015
    Publication date: July 28, 2016
    Inventors: JOHN J. MEWES, DUSTIN M. SALENTINY, DANE T. KUPER, DUSTIN C. BALSLEY
  • Patent number: 9336492
    Abstract: A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analyses.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: May 10, 2016
    Assignee: Iteris, Inc.
    Inventors: John J. Mewes, Dustin M. Salentiny
  • Patent number: 9311605
    Abstract: A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analysis.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: April 12, 2016
    Assignee: ITERIS, INC.
    Inventors: John J. Mewes, Dustin M. Salentiny
  • Patent number: 9292796
    Abstract: A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analyzes.
    Type: Grant
    Filed: June 13, 2015
    Date of Patent: March 22, 2016
    Assignee: ITERIS, INC.
    Inventors: John J. Mewes, Dustin M. Salentiny
  • Publication number: 20160003790
    Abstract: A modeling framework for estimating crop growth and development over the course of an entire growing season generates a continuing profile of crop development from any point prior to and during a growing season until a crop maturity date is reached. The modeling framework applies extended range weather forecasts and remotely-sensed imagery to improve crop growth and development estimation, validation and projection. Output from the profile of crop development profile generates a combination of data for use in auxiliary farm management applications.
    Type: Application
    Filed: September 14, 2015
    Publication date: January 7, 2016
    Inventors: LEON F. OSBORNE, BRENT L. SHAW, JOHN J. MEWES, DUSTIN M. SALENTINY
  • Patent number: 9201991
    Abstract: A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analyzes.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: December 1, 2015
    Assignee: ITERIS, INC.
    Inventors: John J. Mewes, Dustin M. Salentiny
  • Patent number: 9140824
    Abstract: A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analyzes.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: September 22, 2015
    Assignee: ITERIS, INC.
    Inventors: John J. Mewes, Dustin M. Salentiny
  • Patent number: 9087312
    Abstract: A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analyzes.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: July 21, 2015
    Assignee: ITERIS, INC.
    Inventors: John J. Mewes, Dustin M. Salentiny
  • Patent number: 9076118
    Abstract: A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analyses.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: July 7, 2015
    Assignee: ITERIS, INC.
    Inventors: John J. Mewes, Dustin M. Salentiny
  • Patent number: 9037521
    Abstract: A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analyzes.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: May 19, 2015
    Assignee: ITERIS, INC.
    Inventors: John J. Mewes, Dustin M. Salentiny
  • Patent number: 9031884
    Abstract: A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analyses.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: May 12, 2015
    Assignee: Iteris, Inc.
    Inventors: John J. Mewes, Dustin M. Salentiny