Patents by Inventor Dustin P. Armer
Dustin P. Armer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11026781Abstract: Anchor devices and methods can be used to secure a prosthetic valve to a native valve annulus. The anchor device can be a separate expandable element from the prosthetic valve that is first advanced to the annulus and deployed, after which an expandable prosthetic valve is advanced to within the annulus and deployed. The combination of the two elements can apply a clamping force to the valve leaflets which holds the prosthetic valve in place. The anchor device can have a lower or ventricular portion and an upper or atrial portion. The anchor device can include one or more leaflet clamping portions. One, two, or more upstanding vertical posts between the clamping portions can extend upward at the valve commissures and support the upper portion, which can include one or more structures for leak prevention.Type: GrantFiled: November 21, 2019Date of Patent: June 8, 2021Assignee: Edwards Lifesciences CorporationInventors: Dustin P. Armer, Sean Chow, Jenny Nguyen, Emil Karapetian, Tri D. Tran
-
Publication number: 20200113686Abstract: Disclosed herein are representative embodiments of methods, apparatus, and systems used to deliver a prosthetic heart valve to a deficient valve. In one embodiment, for instance, a support structure and an expandable prosthetic valve are advanced through the aortic arch of a patient using a delivery system. The support structure is delivered to a position on or adjacent to the surface of the outflow side of the aortic valve (the support structure defining a support-structure interior). The expandable prosthetic valve is delivered into the aortic valve and into the support-structure interior. The expandable prosthetic heart valve is expanded while the expandable prosthetic heart valve is in the support-structure interior and while the support structure is at the position on or adjacent to the surface of the outflow side of the aortic valve, thereby causing one or more native leaflets of the aortic valve to be frictionally secured between the support structure and the expanded prosthetic heart valve.Type: ApplicationFiled: December 9, 2019Publication date: April 16, 2020Inventors: Christopher J. Olson, Glen T. Rabito, Dustin P. Armer, Minh T. Ma, Devin H. Marr, Cheng-Tung Huang, Hiroshi Okabe, Kevin M. Stewart, Alison S. Curtis, Philip P. Corso, JR.
-
Publication number: 20200085573Abstract: Anchor devices and methods used to secure a prosthetic valve to a native valve annulus are described. The anchor device can be a separate expandable element from the prosthetic valve that is first advanced to the annulus and deployed, after which an expandable prosthetic valve is advanced to within the annulus and deployed. The combination of the two elements can apply a clamping force to the valve leaflets which holds the prosthetic valve in place. The anchor device can have a lower or ventricular portion and an upper or atrial portion. The anchor device can include one or more leaflet clamping portions. One, two, or more upstanding vertical posts between the clamping portions can extend upward at the valve commissures and support the upper portion, which can include one or more structures for leak prevention.Type: ApplicationFiled: November 21, 2019Publication date: March 19, 2020Inventors: Dustin P. Armer, Sean Chow, Jenny Nguyen, Emil Karapetian, Tri D. Tran
-
Patent number: 10500047Abstract: Representative embodiments of methods, apparatus, and systems used to deliver a prosthetic heart valve to a deficient valve are disclosed. In one embodiment, for instance, a support structure and an expandable prosthetic valve are delivered to a position on or adjacent to the surface of the outflow side of the aortic valve (the support structure defining a support-structure interior) via a delivery system. The expandable prosthetic valve is delivered into the aortic valve and into the support-structure interior. The expandable, prosthetic heart valve is expanded while the expandable prosthetic heart valve is in the support-structure interior and while the support structure is at the position on or adjacent to the surface of the outflow side of the aortic valve, thereby causing one or more native leaflets of the aortic valve to be frictionally secured between the support structure and the expanded prosthetic heart valve.Type: GrantFiled: April 15, 2016Date of Patent: December 10, 2019Assignee: Edwards Lifesciences CorporationInventors: Christopher J. Olson, Glen Thomas Rabito, Dustin P. Armer, Minh T. Ma, Devin H. Marr, Cheng-Tung Huang, Hiroshi Okabe, Kevin M. Stewart, Alison S. Curtis, Philip P. Corso, Jr.
-
Publication number: 20190358030Abstract: Expandable docking stations for docking an expandable valve can include a valve seat, one or more sealing portions, and/or one or more retaining portions. The valve seat can be unexpandable or substantially unexpandable beyond a deployed size. The one or more sealing portions can be connected to the valve seat and extend radially outward of the valve seat. The one or more sealing portions can be constructed to expand outward of the valve seat and provide a seal over a range of sizes. The one or more retaining portions can be connected to the one or more sealing portions. The one or more retaining portions are configured to retain the docking station at a deployed position.Type: ApplicationFiled: August 7, 2019Publication date: November 28, 2019Inventors: Dustin P. Armer, Michael D. Franklin, Sergio Delgado, Abhijeet Joshi, Dinesh L. Sirimanne, Russell T. Joseph, Eason Michael Abbott, Tram Ngoc Nguyen, Son V. Nguyen, Hien Tran Ngo, Vivian Tran, Charles L. Bowman, Stanton J. Rowe
-
Publication number: 20190231521Abstract: Expandable docking stations for docking an expandable valve can include a valve seat, one or more sealing portions, and/or one or more retaining portions. The valve seat can be unexpandable or substantially unexpandable beyond a deployed size. The one or more sealing portions can be connected to the valve seat and extend radially outward of the valve seat. The one or more sealing portions can be constructed to expand outward of the valve seat and provide a seal over a range of sizes. The one or more retaining portions can be connected to the one or more sealing portions. The one or more retaining portions are configured to retain the docking station at a deployed position.Type: ApplicationFiled: March 1, 2019Publication date: August 1, 2019Inventors: Dustin P. Armer, Michael D. Franklin, Sergio Delgado, Abhijeet Joshi, Dinesh L. Sirinanne, Russell T. Joseph, Eason Michael Abbott, Tram Ngoc Nguyen, Son V. Nguyen, Hien Tran Ngo, Vivian Tran, Charles L. Bowman, Stanton J. Rowe
-
Patent number: 10363130Abstract: Expandable docking stations for docking an expandable valve can include a valve seat, one or more sealing portions, and one or more retaining portions. The valve seat can be unexpandable or substantially unexpandable beyond a deployed size. The one or more sealing portions are connected to the valve seat and extend radially outward of the valve seat. The one or more sealing portions are constructed to expand outward of the valve seat and provide a seal over a range of sizes. The one or more retaining portions are connected to the one or more sealing portions. The one or more retaining portions are configured to retain the docking station at a deployed position.Type: GrantFiled: February 1, 2017Date of Patent: July 30, 2019Assignee: Edwards Lifesciences CorporationInventors: Dustin P. Armer, Michael D. Franklin, Sergio Delgado, Abhijeet Joshi, Dinesh L. Sirimanne, Russell T. Joseph, Eason Michael Abbott, Tram Ngoc Nguyen, Son V. Nguyen, Hien Tran Ngo, Vivian Tran, Charles L. Bowman, Stanton J. Rowe
-
Publication number: 20190000615Abstract: Docking stations for transcatheter valves are described. The docking stations can include an expandable frame, at least one sealing portion, and a valve seat. The expandable frame can be configured to conform to an interior shape of a portion of the circulatory system when expanded inside the circulatory system. The sealing portion can be configured to contact an interior surface of the circulatory system to create a seal. The valve seat can be connected to the expandable frame and can be configured to support an expandable transcatheter valve. The docking stations are adaptable to different anatomies/locations to allow implantation of a transcatheter valve in a variety of anatomies/locations.Type: ApplicationFiled: July 13, 2018Publication date: January 3, 2019Inventors: Liron Tayeb, Eran Goldberg, David Maimon, Adi Carmi, Arie Tylis, Ofir Witzman, Ralph Schneider, Mohammad Jafari, Hengchu Cao, Eason Michael Abbott, Dustin P. Armer, Michael D. Franklin, Tomer Saar, Anatoly Dvorsky, John J. Desrosiers, Daniel James Murray, Michael G. Valdez, Assaf Bash, Amir Blumenfeld, Noa Axelrod, Eitan Atias
-
Publication number: 20180318081Abstract: According to one representative embodiment, a method of treating aortic insufficiency comprises delivering a support structure to a position around the leaflets of a native heart valve. An expandable prosthetic heart valve can be advanced into the native heart valve and into the interior of the annular body. The prosthetic heart valve can be expanded into contact with the leaflets of the native valve, thereby causing the leaflets of the native valve to be frictionally secured between an inner surface of the annular body and an outer surface of the prosthetic heart valve. A delivery apparatus for delivering the support structure can include a first shaft that is allowed to move in a proximal direction relative to a second shaft, when the second shaft foreshortens as a result of an adjustment mechanism being actuated to increase the curvature of the second shaft.Type: ApplicationFiled: July 6, 2018Publication date: November 8, 2018Inventors: Glen T. Rabito, Dustin P. Armer, Emil Karapetian
-
Patent number: 9999506Abstract: A medical device configured for placement in a blood vessel, in which an elastic tube extends between first and second expandable anchoring stents. The elastic tube is constructed of a resilient material that deflects outward in response to increased blood pressure of a heart beat and that moves back inward as the blood pressure drops, thereby aiding the heart's pumping action.Type: GrantFiled: February 22, 2016Date of Patent: June 19, 2018Assignee: Edwards Lifesciences CorporationInventors: Christopher J. Olson, Glen Thomas Rabito, Dustin P. Armer, David L. Hauser
-
Publication number: 20170231756Abstract: Expandable docking stations for docking an expandable valve can include a valve seat, one or more sealing portions, and one or more retaining portions. The valve seat can be unexpandable or substantially unexpandable beyond a deployed size. The one or more sealing portions are connected to the valve seat and extend radially outward of the valve seat. The one or more sealing portions are constructed to expand outward of the valve seat and provide a seal over a range of sizes. The one or more retaining portions are connected to the one or more sealing portions. The one or more retaining portions are configured to retain the docking station at a deployed position.Type: ApplicationFiled: February 1, 2017Publication date: August 17, 2017Applicant: Edwards Lifesciences CorporationInventors: Dustin P. Armer, Michael D. Franklin, Sergio Delgado, Abhijeet Joshi, Dinesh L. Sirimanne, Russell T. Joseph, Eason Michael Abbott, Tram Ngoc Nguyen, Son V. Nguyen, Hien Tran Ngo, Vivian Tran, Charles L. Bowman, Stanton J. Rowe
-
Publication number: 20160228240Abstract: Disclosed herein are representative embodiments of methods, apparatus, and systems used to deliver a prosthetic heart valve to a deficient valve. In one embodiment, for instance, a support structure and an expandable prosthetic valve are advanced through the aortic arch of a patient using a delivery system. The support structure is delivered to a position on or adjacent to the surface of the outflow side of the aortic valve (the support structure defining a support-structure interior). The expandable prosthetic valve is delivered into the aortic valve and into the support-structure interior. The expandable prosthetic heart valve is expanded while the expandable prosthetic heart valve is in the support-structure interior and while the support structure is at the position on or adjacent to the surface of the outflow side of the aortic valve, thereby causing one or more native leaflets of the aortic valve to be frictionally secured between the support structure and the expanded prosthetic heart valve.Type: ApplicationFiled: April 15, 2016Publication date: August 11, 2016Inventors: Christopher J. Olson, Glen Thomas Rabito, Dustin P. Armer, Minh T. Ma, Devin H. Marr, Cheng-Tung Huang, Hiroshi Okabe, Kevin M. Stewart, Alison S. Curtis, Philip P. Corso, JR.
-
Publication number: 20160166384Abstract: A medical device configured for placement in a blood vessel, in which an elastic tube extends between first and second expandable anchoring stents. The elastic tube is constructed of a resilient material that deflects outward in response to increased blood pressure of a heart beat and that moves back inward as the blood pressure drops, thereby aiding the heart's pumping action.Type: ApplicationFiled: February 22, 2016Publication date: June 16, 2016Applicant: Edwards Lifesciences CorporationInventors: Christopher J. Olson, Glen Thomas Rabito, Dustin P. Armer, David L. Hauser
-
Patent number: 9326853Abstract: Disclosed herein are representative embodiments of methods, apparatus, and systems used to deliver a prosthetic heart valve to a deficient valve. In one embodiment, for instance, a support structure and an expandable prosthetic valve are advanced through the aortic arch of a patient using a delivery system. The support structure is delivered to a position on or adjacent to the surface of the outflow side of the aortic valve (the support structure defining a support-structure interior). The expandable prosthetic valve is delivered into the aortic valve and into the support-structure interior. The expandable prosthetic heart valve is expanded while the expandable prosthetic heart valve is in the support-structure interior and while the support structure is at the position on or adjacent to the surface of the outflow side of the aortic valve, thereby causing one or more native leaflets of the aortic valve to be frictionally secured between the support structure and the expanded prosthetic heart valve.Type: GrantFiled: July 22, 2011Date of Patent: May 3, 2016Assignee: Edwards Lifesciences CorporationInventors: Christopher Olson, Glen T. Rabito, Dustin P. Armer, Minh Ma, Devin Marr, Mark Huang, Hiroshi Okabe, Kevin Stewart, Alison S. Curtis, Philip P. Corso, Jr.
-
Patent number: 9289282Abstract: A medical device for treating aortic insufficiency (and associated aneurysms or defects of any other vessel associated with a valve) includes a support structure, a stent, a prosthetic valve and a deflector. Generally, the support structure is configured to cooperate with the prosthetic valve to pinch the native valve therebetween and provide an anchor for the stent which extends into the aorta and supports the deflector which is positioned to abate blood flow against the aneurysm.Type: GrantFiled: May 31, 2012Date of Patent: March 22, 2016Assignee: Edwards Lifesciences CorporationInventors: Christopher Olson, Glen T. Rabito, Dustin P. Armer, David L. Hauser
-
Publication number: 20150282931Abstract: According to one representative embodiment, a method of treating aortic insufficiency comprises delivering a support structure to a position around the leaflets of a native heart valve. The support structure comprises an annular body defining an interior and at least one projection extending radially inwardly from the annular body. An expandable prosthetic heart valve can be advanced into the native heart valve and into the interior of the annular body. The prosthetic heart valve can be expanded into contact with the leaflets of the native valve, thereby causing the leaflets of the native valve to be frictionally secured between an inner surface of the annular body and an outer surface of the prosthetic heart valve and causing the at least one projection and a portion of one of the leaflets contacted by the at least one projection to extend into an opening of the frame of the prosthetic valve.Type: ApplicationFiled: November 20, 2013Publication date: October 8, 2015Applicant: EDWARDS LIFESCIENCES CORPORATIONInventors: William C. Brunnett, Charles Stanislaus, Glen T. Rabito, Dustin P. Armer, Emil Karapetian, Nancy Khuu
-
Publication number: 20120310328Abstract: A medical device for treating aortic insufficiency (and associated aneurysms or defects of any other vessel associated with a valve) includes a support structure, a stent, a prosthetic valve and a deflector. Generally, the support structure is configured to cooperate with the prosthetic valve to pinch the native valve therebetween and provide an anchor for the stent which extends into the aorta and supports the deflector which is positioned to abate blood flow against the aneurysm.Type: ApplicationFiled: May 31, 2012Publication date: December 6, 2012Applicant: EDWARDS LIFESCIENCES CORPORATIONInventors: Christopher Olson, Glen T. Rabito, Dustin P. Armer, David L. Hauser
-
Publication number: 20120022633Abstract: Disclosed herein are representative embodiments of methods, apparatus, and systems used to deliver a prosthetic heart valve to a deficient valve. In one embodiment, for instance, a support structure and an expandable prosthetic valve are advanced through the aortic arch of a patient using a delivery system. The support structure is delivered to a position on or adjacent to the surface of the outflow side of the aortic valve (the support structure defining a support-structure interior). The expandable prosthetic valve is delivered into the aortic valve and into the support-structure interior. The expandable prosthetic heart valve is expanded while the expandable prosthetic heart valve is in the support-structure interior and while the support structure is at the position on or adjacent to the surface of the outflow side of the aortic valve, thereby causing one or more native leaflets of the aortic valve to be frictionally secured between the support structure and the expanded prosthetic heart valve.Type: ApplicationFiled: July 22, 2011Publication date: January 26, 2012Inventors: Christopher Olson, Glen T. Rabito, Dustin P. Armer, Minh Ma, Devin Marr, Mark Huang, Hiroshi Okabe, Kevin Stewart, Alison S. Curtis, Philip P. Corso, JR.
-
Patent number: D867595Type: GrantFiled: April 28, 2017Date of Patent: November 19, 2019Assignee: Edwards Lifesciences CorporationInventors: Dustin P. Armer, Sergio Delgado, Michael D. Franklin, Eason Michael Abbott, Tram Ngoc Nguyen