Patents by Inventor Dustin W. Ho

Dustin W. Ho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7566891
    Abstract: Embodiments of the invention relate generally to an ultraviolet (UV) cure chamber for curing a dielectric material disposed on a substrate and to methods of curing dielectric materials using UV radiation. A substrate processing tool according to one embodiment comprises a body defining a substrate processing region; a substrate support adapted to support a substrate within the substrate processing region; an ultraviolet radiation lamp spaced apart from the substrate support, the lamp configured to transmit ultraviolet radiation to a substrate positioned on the substrate support; and a motor operatively coupled to rotate at least one of the ultraviolet radiation lamp or substrate support at least 180 degrees relative to each other.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: July 28, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Juan Carlos Rocha-Alvarez, Thomas Nowak, Dale R. Du Bois, Sanjeev Baluja, Scott A. Hendrickson, Dustin W. Ho, Andrzei Kaszuba, Tom K. Cho
  • Publication number: 20090162259
    Abstract: An ultraviolet (UV) cure chamber enables curing a dielectric material disposed on a substrate and in situ cleaning thereof. A tandem process chamber provides two separate and adjacent process regions defined by a body covered with a lid having windows aligned respectively above each process region. One or more UV sources per process region that are covered by housings coupled to the lid emit UV light directed through the windows onto substrates located within the process regions. The UV sources can be an array of light emitting diodes or bulbs utilizing a source such as microwave or radio frequency. The UV light can be pulsed during a cure process. Using oxygen radical/ozone generated remotely and/or in-situ accomplishes cleaning of the chamber. Use of lamp arrays, relative motion of the substrate and lamp head, and real-time modification of lamp reflector shape and/or position can enhance uniformity of substrate illumination.
    Type: Application
    Filed: February 26, 2009
    Publication date: June 25, 2009
    Inventors: Thomas Nowak, Juan Carlos Rocha-Alvarez, Andrzej Kaszuba, Scott A. Hendrickson, Dustin W. Ho, Sanjeev Baluja, Tom Cho, Josephine Chang, Hichem M'saad
  • Patent number: 7501354
    Abstract: Nano-porous low dielectric constant films are deposited utilizing materials having reactive by-products readily removed from a processing chamber by plasma cleaning. In accordance with one embodiment, an oxidizable silicon containing compound is reacted with an oxidizable non-silicon component having thermally labile groups, in a reactive oxygen ambient and in the presence of a plasma. The deposited silicon oxide film is annealed to form dispersed microscopic voids or pores that remain in the nano-porous silicon. Oxidizable non-silicon components with thermally labile groups that leave by-products readily removed from the chamber, include but are not limited to, limonene, carene, cymene, fenchone, vinyl acetate, methyl methacrylate, ethyl vinyl ether, tetrahydrofuran, furan, 2,5 Norbornadiene, cyclopentene, cyclopentene oxide, methyl cyclopentene, 2-cyclopentene-1-one, and 1-butene.
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: March 10, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Dustin W. Ho, Derek R. Witty, Helen R. Armer, Hichem M'Saad
  • Publication number: 20080280457
    Abstract: A method for depositing a low dielectric constant film by flowing a oxidizing gas into a processing chamber, flowing an organosilicon compound from a bulk storage container through a digital liquid flow meter at an organosilicon flow rate to a vaporization injection valve, vaporizing the organosilicon compound and flowing the organosilicon compound and a carrier gas into the processing chamber, maintaining the organosilicon flow rate to deposit an initiation layer, flowing a porogen compound from a bulk storage container through a digital liquid flow meter at a porogen flow rate to a vaporization injection valve, vaporizing the porogen compound and flowing the porogen compound and a carrier gas into the processing chamber, increasing the organosilicon flow rate and the porogen flow rate while depositing a transition layer, and maintaining a second organosilicon flow rate and a second porogen flow rate to deposit a porogen containing organosilicate dielectric layer.
    Type: Application
    Filed: July 9, 2008
    Publication date: November 13, 2008
    Inventors: Dustin W. Ho, Juan Carlos Rocha-Alvarez, Alexandros T. Demos, Kelvin Chan, Nagarajan Rajagopalan, Visweswaren Sivaramakrishnan
  • Patent number: 7410916
    Abstract: A method for depositing a low dielectric constant film by flowing a oxidizing gas into a processing chamber, flowing an organosilicon compound from a bulk storage container through a digital liquid flow meter at an organosilicon flow rate to a vaporization injection valve, vaporizing the organosilicon compound and flowing the organosilicon compound and a carrier gas into the processing chamber, maintaining the organosilicon flow rate to deposit an initiation layer, flowing a porogen compound from a bulk storage container through a digital liquid flow meter at a porogen flow rate to a vaporization injection valve, vaporizing the porogen compound and flowing the porogen compound and a carrier gas into the processing chamber, increasing the organosilicon flow rate and the porogen flow rate while depositing a transition layer, and maintaining a second organosilicon flow rate and a second porogen flow rate to deposit a porogen containing organosilicate dielectric layer.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: August 12, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Dustin W. Ho, Juan Carlos Rocha-Alvarez, Alexandros T. Demos, Kelvin Chan, Nagarajan Rajagopalan, Visweswaren Sivaramakrishnan
  • Publication number: 20080119058
    Abstract: A method for depositing a low dielectric constant film by flowing a oxidizing gas into a processing chamber, flowing an organosilicon compound from a bulk storage container through a digital liquid flow meter at an organosilicon flow rate to a vaporization injection valve, vaporizing the organosilicon compound and flowing the organosilicon compound and a carrier gas into the processing chamber, maintaining the organosilicon flow rate to deposit an initiation layer, flowing a porogen compound from a bulk storage container through a digital liquid flow meter at a porogen flow rate to a vaporization injection valve, vaporizing the porogen compound and flowing the porogen compound and a carrier gas into the processing chamber, increasing the organosilicon flow rate and the porogen flow rate while depositing a transition layer, and maintaining a second organosilicon flow rate and a second porogen flow rate to deposit a porogen containing organosilicate dielectric layer.
    Type: Application
    Filed: November 21, 2006
    Publication date: May 22, 2008
    Inventors: DUSTIN W. HO, Juan Carlos Rocha-Alvarez, Alexandros T. Demos, Kelvin Chan, Nagarajan Rajagopalan, Visweswaren Sivaramakrishnan
  • Publication number: 20070295012
    Abstract: A re-circulating cooling system can be used with a curing system in order to reduce the exhaust requirements for the system. Further, using a cooling fluid such as nitrogen reduces the production of ozone and the sealing requirements for the system. A simple heat exchanger can be used between return and supply reservoirs in order to remove heat added to the re-circulating fluid during circulation past the curing radiation source. The nitrogen can come from a nitrogen source, or from a membrane or other device operable to split feed gas into its molecular components to provide a source of gas rich in nitrogen. An ozone destruction unit can be used with such a cooling system to reduce the amount of ozone to acceptable levels, and to minimize consumption of the nitrogen. A catalyst can be used to deplete the ozone that does not get consumed during the reaction.
    Type: Application
    Filed: November 3, 2006
    Publication date: December 27, 2007
    Applicant: Applied Materials, Inc.
    Inventors: Dustin W. Ho, Juan Carlos Rocha-Alvarez, Dale R. Du Bois, Scott A. Hendrickson, Sanjeev Baluja, Ndanka O. Mukuti
  • Publication number: 20070298167
    Abstract: A re-circulating cooling system can be used with a curing system in order to reduce the exhaust requirements for the system. Further, using a cooling fluid such as nitrogen reduces the production of ozone and the sealing requirements for the system. A simple heat exchanger can be used between return and supply reservoirs in order to remove heat added to the re-circulating fluid during circulation past the curing radiation source. The nitrogen can come from a nitrogen source, or from a membrane or other device operable to split feed gas into its molecular components to provide a source of gas rich in nitrogen. An ozone destruction unit can be used with such a cooling system to reduce the amount of ozone to acceptable levels, and to minimize consumption of the nitrogen. A catalyst can be used to deplete the ozone that does not get consumed during the reaction.
    Type: Application
    Filed: November 6, 2006
    Publication date: December 27, 2007
    Applicant: Applied Materials, Inc.
    Inventors: DUSTIN W. HO, Juan Carlos Rocha-Alvarez, Dale R. Du Bois, Scott A. Hendrickson, Sanjeev Baluja, Ndanka O. Mukuti