Patents by Inventor Dvir Yelin

Dvir Yelin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11850065
    Abstract: A method for locating a vessel, the method comprising illuminating at least a portion of the vessel with a background light having a substantially high susceptibility to absorption by particles in said portion of the vessel; detecting backscattered light from said illuminated portion of the vessel; reproducing an image from said backscattered light; and identifying dark regions within said reproduced image.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: December 26, 2023
    Assignee: Technion Research & Development Foundation Limited
    Inventors: Dvir Yelin, Lior Golan
  • Publication number: 20230380725
    Abstract: A system for noninvasive in vivo functional imaging of the human ear and measurement of nanometer scale motion of the tympanic membrane under various acoustic excitations, and identification of vibration patterns that vary between human subjects in response to sound. By combining spectrally encoded imaging with phase-sensitive spectral-domain interferometry, high-resolution imaging of the membrane surface is obtained within a fraction of a second, through a handheld imaging probe. The detailed physiological data obtained allows measuring a wide range of clinically relevant parameters for patient diagnosis, and provides a new tool for studying middle and inner ear physiology. Use of a line measurement technique, without mechanically scanning the probe beam, enables characteristics of the membrane vibration to be measured, in a time scale of tenths of a second, thereby reducing the possibility of inaccuracy because of movements of the hand-held instrument.
    Type: Application
    Filed: October 18, 2021
    Publication date: November 30, 2023
    Inventors: Dvir YELIN, Matan HAMRA
  • Patent number: 11779246
    Abstract: A system and method to measure blood oxygenation levels and total hemoglobin on individually selected blood vessels, to provide a representation of the subject condition and of tissue perfusion that may be used for diagnosing specific tissue conditions. Reflection spectra from individual blood vessels or a collection of vessels are measured by using wide-field imaging for selecting target vessels and a narrow-field confocal detection system to enable measuring local blood oxygenation and hemoglobin. Optical fibers may be used to illuminate the target vessel and to detect light diffusively reflected therefrom. The reflection spectra may be analyzed in a spectrometer to extract the ratio of the deoxy- to oxyhemoglobin and to determine their absolute concentration for computing total hemoglobin levels. An alternative implementation uses image processing on camera images of a blood vessel, generated at an isosbestic wavelength of the deoxy- and oxyhemoglobin, and optionally also at neighboring wavelengths.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: October 10, 2023
    Assignee: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LIMITED
    Inventor: Dvir Yelin
  • Patent number: 11547315
    Abstract: A spectrally encoded flow cytometry (SEFC) technique for imaging blood in the microcirculation. Since the dependency of one of the axes of the image on time prevents effective quantification of essential clinical parameters, the optical path in an SEFC system is split into two parallel imaging lines, followed by data analysis for recovering the flow speed from the multiplexed data. The data analysis may be auto-correlation of a pair of images obtained from a sequence of images of the imaged blood vessel.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: January 10, 2023
    Assignee: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LIMITED
    Inventors: Dvir Yelin, Tal Elhanan
  • Publication number: 20210298652
    Abstract: A system and method to measure blood oxygenation levels and total hemoglobin on individually selected blood vessels, to provide a representation of the subject condition and of tissue perfusion that may be used for diagnosing specific tissue conditions. Reflection spectra from individual blood vessels or a collection of vessels are measured by using wide-field imaging for selecting target vessels and a narrow-field confocal detection system to enable measuring local blood oxygenation and hemoglobin. Optical fibers may be used to illuminate the target vessel and to detect light diffusively reflected therefrom. The reflection spectra may be analyzed in a spectrometer to extract the ratio of the deoxy- to oxyhemoglobin and to determine their absolute concentration for computing total hemoglobin levels. An alternative implementation uses image processing on camera images of a blood vessel, generated at an isosbestic wavelength of the deoxy- and oxyhemoglobin, and optionally also at neighboring wavelengths.
    Type: Application
    Filed: June 14, 2021
    Publication date: September 30, 2021
    Inventor: Dvir YELIN
  • Patent number: 11033209
    Abstract: A system and method to measure blood oxygenation levels and total hemoglobin on individually selected blood vessels, to provide a representation of the subject condition and of tissue perfusion that may be used for diagnosing specific tissue conditions. Reflection spectra from individual blood vessels or a collection of vessels are measured by using wide-field imaging for selecting target vessels and a narrow-field confocal detection system to enable measuring local blood oxygenation and hemoglobin. Optical fibers may be used to illuminate the target vessel and to detect light diffusively reflected therefrom. The reflection spectra may be analyzed in a spectrometer to extract the ratio of the deoxy- to oxyhemoglobin and to determine their absolute concentration for computing total hemoglobin levels. An alternative implementation uses image processing on camera images of a blood vessel, generated at an isosbestic wavelength of the deoxy- and oxyhemoglobin, and optionally also at neighboring wavelengths.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: June 15, 2021
    Assignee: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LIMITED
    Inventor: Dvir Yelin
  • Patent number: 10994992
    Abstract: A method of manipulating a living cell is disclosed. The method comprises, directing a pulsed optical field to at least one conductive nanoparticle present in the vicinity of the cell, so as to generate cavitations at or near the conductive nanoparticle at sufficient amount to effect at least one cell modification selected from the group consisting of cell-damage and cell-fusion.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: May 4, 2021
    Assignee: Technion Research & Development Foundation Limited
    Inventors: Dvir Yelin, Limor Minai, Daniella Yeheskely-Hayon
  • Patent number: 10921112
    Abstract: Measurement of the three dimensional morphology of blood cells is performed using a model for simulating reflectance confocal images of the cells, providing the relation between cell morphology and the resulting interference patterns under confocal illumination. The simulation model uses the top and bottom membranes of the cell as the elements for generating the interference fringes, and takes into account the cell size, shape, angle of orientation and distance from the focal point of the confocal illumination beam. By comparing the simulated cell images to actual interference patterns obtained in confocal images obtained from the blood samples, the model can be used for providing three dimensional measurements of the individual cell morphology. This enables, for instance, in vitro measurement of the mean corpuscular volume of blood cells and diagnosis of hematological disorders which are associated with cell morphology deviations, such as thalassemia and sickle cell anemia.
    Type: Grant
    Filed: September 18, 2016
    Date of Patent: February 16, 2021
    Assignee: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LTD.
    Inventors: Dvir Yelin, Adel Zeidan
  • Patent number: 10835110
    Abstract: Exemplary embodiments of apparatus and method according to the present disclosure are provided. For example, an apparatus for providing electromagnetic radiation to a structure can be provided. The exemplary apparatus can include a first arrangement having at least two wave-guides which can be configured to provide there through at least two respective electro-magnetic radiations with at least partially different wavelengths from one another. The exemplary apparatus can also include a dispersive second arrangement structured to receive the electro-magnetic radiations and forward at least two dispersed radiations associated with the respective electro-magnetic radiations to at least one section of the structure. The wave-guide(s) can be structured and/or spatially arranged with respect to the dispersive arrangement to facilitate at least partially overlap of the dispersed radiations on the structure.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: November 17, 2020
    Assignee: The General Hospital Corporation
    Inventors: Guillermo J. Tearney, Brett Eugene Bouma, Dvir Yelin, Dongkyun Kang
  • Publication number: 20200288992
    Abstract: A spectrally encoded flow cytometry (SEFC) technique for imaging blood in the microcirculation. Since the dependency of one of the axes of the image on time prevents effective quantification of essential clinical parameters, the optical path in an SEFC system is split into two parallel imaging lines, followed by data analysis for recovering the flow speed from the multiplexed data. The data analysis may be auto-correlation of a pair of images obtained from a sequence of images of the imaged blood vessel.
    Type: Application
    Filed: June 3, 2020
    Publication date: September 17, 2020
    Inventors: Dvir YELIN, Tal ELHANAN
  • Publication number: 20200268312
    Abstract: A method for locating a vessel, the method comprising illuminating at least a portion of the vessel with a background light having a substantially high susceptibility to absorption by particles in said portion of the vessel; detecting backscattered light from said illuminated portion of the vessel; reproducing an image from said backscattered light; and identifying dark regions within said reproduced image.
    Type: Application
    Filed: May 11, 2020
    Publication date: August 27, 2020
    Applicant: Technion Research & Development Foundation Limited
    Inventors: Dvir YELIN, Lior GOLAN
  • Patent number: 10646160
    Abstract: A method for locating a vessel, the method comprising illuminating at least a portion of the vessel with a background light having a substantially high susceptibility to absorption by particles in said portion of the vessel; detecting backscattered light from said illuminated portion of the vessel; reproducing an image from said backscattered light; and identifying dark regions within said reproduced image.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: May 12, 2020
    Assignee: Technion Research & Development Foundation Limited
    Inventors: Dvir Yelin, Lior Golan
  • Patent number: 10531790
    Abstract: A spectrally encoded imaging device having a light transmission path arrangement which propagates light to illuminate a target object, a light collection path arrangement having a light collection waveguide which propagates a spectrally encoded portion of the light from the target object to a detector which forms an image of the target object accordingly, and a diffractive element which spectrally disperses at least one of the light and the spectrally encoded portion. The light transmission path arrangement and the light collection path arrangement are optically isolated from one another.
    Type: Grant
    Filed: August 17, 2014
    Date of Patent: January 14, 2020
    Assignee: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LTD.
    Inventors: Dvir Yelin, Avraham Abramov
  • Publication number: 20180344228
    Abstract: A system and method to measure blood oxygenation levels and total hemoglobin on individually selected blood vessels, to provide a representation of the subject condition and of tissue perfusion that may be used for diagnosing specific tissue conditions. Reflection spectra from individual blood vessels or a collection of vessels are measured by using wide-field imaging for selecting target vessels and a narrow-field confocal detection system to enable measuring local blood oxygenation and hemoglobin. Optical fibers may be used to illuminate the target vessel and to detect light diffusively reflected therefrom. The reflection spectra may be analyzed in a spectrometer to extract the ratio of the deoxy- to oxyhemoglobin and to determine their absolute concentration for computing total hemoglobin levels. An alternative implementation uses image processing on camera images of a blood vessel, generated at an isosbestic wavelength of the deoxy- and oxyhemoglobin, and optionally also at neighboring wavelengths.
    Type: Application
    Filed: November 30, 2016
    Publication date: December 6, 2018
    Inventor: Dvir YELIN
  • Publication number: 20180259318
    Abstract: Measurement of the three dimensional morphology of blood cells is performed using a model for simulating reflectance confocal images of the cells, providing the relation between cell morphology and the resulting interference patterns under confocal illumination. The simulation model uses the top and bottom membranes of the cell as the elements for generating the interference fringes, and takes into account the cell size, shape, angle of orientation and distance from the focal point of the confocal illumination beam. By comparing the simulated cell images to actual interference patterns obtained in confocal images obtained from the blood samples, the model can be used for providing three dimensional measurements of the individual cell morphology. This enables, for instance, in vitro measurement of the mean corpuscular volume of blood cells and diagnosis of hematological disorders which are associated with cell morphology deviations, such as thalassemia and sickle cell anemia.
    Type: Application
    Filed: September 18, 2016
    Publication date: September 13, 2018
    Inventors: DVIR YELIN, ADEL ZEIDAN
  • Patent number: 9968245
    Abstract: Exemplary apparatus and process can be provided for imaging information associated with at least one portion of a sample. For example, (i) first different wavelengths of at least one first electro-magnetic radiation can be provided within a first wavelength range provided on the portion of the sample so as to determine at least one first transverse location of the portion, and (ii) second different wavelengths of at least one second electro-magnetic radiation within a second wavelength range can be provided on the portion so as to determine at least one second transverse location of the portion. The first and second ranges can east partially overlap on the portion. Further, a relative phase between at least one third electro-magnetic radiation electro-magnetic radiation being returned from the sample and at least one fourth electro-magnetic radiation returned from a reference can be obtained to determine a relative depth location of the portion.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: May 15, 2018
    Assignee: The General Hospital Corporation
    Inventors: Guillermo J. Tearney, Brett Eugene Bouma, Dvir Yelin
  • Publication number: 20180010965
    Abstract: Exemplary apparatus for method for forming at least one spectral encoding endoscopy configuration. For example, it is possible to modify a spacer configuration and an lens optics configuration to have respective predetermined lengths, and also to modify a dispersive optics configuration to have a further predetermined length. Further, the modified spacer and modified lens optics configurations can be attached to one another to form a combined spacer-lens optics configuration. The modified dispersive optics configuration can be attached to a substrate to form to form a grating substrate configuration. Additionally, the combined spacer-lens optics configuration can be connected to an optical fiber, and the modified attached dispersed optics configuration can be connected to the modified attached lens optics configuration to form the spectral encoding endoscopy configuration(s) which can extends along a particular axis.
    Type: Application
    Filed: September 14, 2017
    Publication date: January 11, 2018
    Inventors: Milen Shishkov, Guillermo J. Tearney, Brett Eugene Bouma, Dvir Yelin, Nicusor Iftimia
  • Patent number: 9791317
    Abstract: Exemplary apparatus for method for forming at least one spectral encoding endoscopy configuration. For example, it is possible to modify a spacer configuration and an lens optics configuration to have respective predetermined lengths, and also to modify a dispersive optics configuration to have a further predetermined length. Further, the modified spacer and modified lens optics configurations can be attached to one another to form a combined spacer-lens optics configuration. The modified dispersive optics configuration can be attached to a substrate to form to form a grating substrate configuration. Additionally, the combined spacer-lens optics configuration can be connected to an optical fiber, and the modified attached dispersed optics configuration can be connected to the modified attached lens optics configuration to form the spectral encoding endoscopy configuration(s) which can extends along a particular axis.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: October 17, 2017
    Assignee: The General Hospital Corporation
    Inventors: Milen Shishkov, Guillermo J. Tearney, Brett Eugene Bouma, Dvir Yelin, Nicusor Iftimia
  • Publication number: 20170160132
    Abstract: Exemplary apparatus for method for forming at least one spectral encoding endoscopy configuration. For example, it is possible to modify a spacer configuration and an lens optics configuration to have respective predetermined lengths, and also to modify a dispersive optics configuration to have a further predetermined length. Further, the modified spacer and modified lens optics configurations can be attached to one another to form a combined spacer-lens optics configuration. The modified dispersive optics configuration can be attached to a substrate to form to form a grating substrate configuration. Additionally, the combined spacer-lens optics configuration can be connected to an optical fiber, and the modified attached dispersed optics configuration can be connected to the modified attached lens optics configuration to form the spectral encoding endoscopy configuration(s) which can extends along a particular axis.
    Type: Application
    Filed: December 12, 2016
    Publication date: June 8, 2017
    Inventors: Milen Shishkov, Guillermo J. Tearney, Brett Eugene Bouma, Dvir Yelin, Nicusor lftimia
  • Patent number: 9664615
    Abstract: A method and apparatus for imaging using a double-clad fiber is described.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: May 30, 2017
    Assignee: The General Hospital Corporation
    Inventors: Brett Eugene Bouma, Guillermo J. Tearney, Dvir Yelin