Patents by Inventor Dwaine L. Klarstrom

Dwaine L. Klarstrom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9551051
    Abstract: A weldable, high temperature oxidation resistant alloy with low solidification crack sensitivity and good resistance to strain age cracking. The alloy contains by weight percent, 25% to 32% iron, 18% to 25% chromium, 3.0% to 4.5% aluminum, 0.2% to 0.6% titanium, 0.2% to 0.43% silicon, up to 0.5% manganese and the balance nickel plus impurities. The Al+Ti content should be between 3.4 and 4.2 and the Cr/Al ratio should be from about 4.5 to 8.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: January 24, 2017
    Assignee: Haynes International, Inc.
    Inventors: Dwaine L. Klarstrom, Steven J. Matthews, Venkat R. Ishwar
  • Publication number: 20130294964
    Abstract: A weldable, high temperature oxidation resistant alloy with low solidification crack sensitivity and good resistance to strain age cracking. The alloy contains by weight percent, 25% to 32% iron, 18% to 25% chromium, 3.0% to 4.5% aluminum, 0.2% to 0.6% titanium, 0.2% to 0.43% silicon, up to 0.5% manganese and the balance nickel plus impurities. The Al+Ti content should be between 3.4 and 4.2 and the Cr/Al ratio should be from about 4.5 to 8.
    Type: Application
    Filed: July 12, 2013
    Publication date: November 7, 2013
    Applicant: HAYNES INTERNATIONAL, INC.
    Inventors: Dwaine L. Klarstrom, Steven J. Matthews, Venkat R. Ishwar
  • Patent number: 8506883
    Abstract: A weldable, high temperature oxidation resistant alloy with low solidification crack sensitivity and good resistance to strain age cracking. The alloy contains by weight percent, 25% to 32% iron, 18% to 25% chromium, 3.0% to 4.5% aluminum, 0.2% to 0.6% titanium, 0.2% to 0.4% silicon, 0.2% to 0.5% manganese and the balance nickel plus impurities. The Al+Ti content should be between 3.4 and 4.2 and the Cr/Al ratio should be from about 4.5 to 8.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: August 13, 2013
    Assignee: Haynes International, Inc.
    Inventors: Dwaine L. Klarstrom, Steven J. Matthews, Venkat R. Ishwar
  • Publication number: 20090155119
    Abstract: A weldable, high temperature oxidation resistant alloy with low solidification crack sensitivity and good resistance to strain age cracking. The alloy contains by weight percent, 25% to 32% iron, 18% to 25% chromium, 3.0% to 4.5% aluminum, 0.2% to 0.6% titanium, 0.2% to 0.4% silicon, 0.2% to 0.5% manganese and the balance nickel plus impurities. The Al+Ti content should be between 3.4 and 4.2 and the Cr/Al ratio should be from about 4.5 to 8.
    Type: Application
    Filed: December 12, 2007
    Publication date: June 18, 2009
    Inventors: Dwaine L. Klarstrom, Steven J. Matthews, Venkat R. Ishwar
  • Patent number: 6638373
    Abstract: A two step heat treatment for Ni—Cr—Mo alloys containing from 12% to 23.5% chromium provides higher yield strength, high tensile strength and other mechanical properties comparable to those observed in similar alloys age-hardened according to current practices. This treatment is done over a total time of not more than 50 hours. However, the treatment works for only those alloys having alloying elements present in amounts according to an equation here disclosed.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: October 28, 2003
    Inventors: Lee Pike, Jr., Dwaine L. Klarstrom, Michael F. Rothman
  • Patent number: 6610119
    Abstract: High molybdenum, corrosion-resistant alloys are provided with greatly increased thermal stability by controlling the atom concentrations to be NiaMobXcYdZe, where: a is between about 73 and 77 atom percent b is between about 18 and 23 atom percent X is one or more required substitutional alloying elements selected from Groups VI, VII and VIII of the Periodic Table and c does not exceed about 5 atom percent for any one element, Y is one or more optional substitutional alloying elements which may be present and d does not exceed about one atom percent for any one element, Z is one or more interstitial elements and e is as tow as possible, not exceeding about 0.2 atom percent in total; and the sum of c and d is between about 2.5 and 7.5 atom percent.
    Type: Grant
    Filed: September 13, 2001
    Date of Patent: August 26, 2003
    Assignee: Haynes International, Inc.
    Inventor: Dwaine L. Klarstrom
  • Patent number: 6610155
    Abstract: A single step heat treatment for Ni—Cr—Mo alloys containing from 12% to 19% chromium and from 18% to 23% molybdenum provides higher yield strength, high tensile strength and other mechanical properties comparable to those observed in similar alloys age-hardened according to current practices. This treatment is done over a total time of at least 4 hours and preferably less than 50 hours. However, the treatment works for only those alloys having alloying elements present in amounts according to an equation here disclosed.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: August 26, 2003
    Assignee: Haynes International, Inc.
    Inventors: Lee M. Pike, Dwaine L. Klarstrom
  • Patent number: 6579388
    Abstract: A single step heat treatment for Ni-Cr-Mo alloys containing from 12% to 19% chromium and from 18% to 23% molybdenum provides higher yield strength, high tensile strength and other mechanical properties comparable to those observed in similar alloys age-hardened according to current practices. This treatment is done over a total time of at least 24 hours and preferably less than 50 hours. However, the treatment works for only those alloys having alloying elements present in amounts according to an equation here disclosed.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: June 17, 2003
    Assignee: Haynes International, Inc.
    Inventors: Lee M. Pike, Jr., Dwaine L. Klarstrom
  • Publication number: 20030091460
    Abstract: High molybdenum, corrosion-resistant alloys are provided with greatly increased thermal stability by controlling the atom concentrations to be NiaMobXcYdZe, where:
    Type: Application
    Filed: September 13, 2001
    Publication date: May 15, 2003
    Inventor: Dwaine L. Klarstrom
  • Publication number: 20030084975
    Abstract: A single step heat treatment for Ni-Cr-Mo alloys containing from 12% to 19% chromium and from 18% to 23% molybdenum provides higher yield strength, high tensile strength and other mechanical properties comparable to those observed in similar alloys age-hardened according to current practices. This treatment is done over a total time of at least 4 hours and preferably less than 50 hours. However, the treatment works for only those alloys having alloying elements present in amounts according to an equation here disclosed.
    Type: Application
    Filed: June 7, 2002
    Publication date: May 8, 2003
    Inventors: Lee M. Pike, Dwaine L. Klarstrom
  • Publication number: 20030070733
    Abstract: A single step heat treatment for Ni—Cr—Mo alloys containing from 12% to 19% chromium and from 18% to 23% molybdenum provides higher yield strength, high tensile strength and other mechanical properties comparable to those observed in similar alloys age-hardened according to current practices. This treatment is done over a total time of at least 24 hours and preferably less than 50 hours. However, the treatment works for only those alloys having alloying elements present in amounts according to an equation here disclosed.
    Type: Application
    Filed: June 28, 2001
    Publication date: April 17, 2003
    Inventors: Lee M. Pike, Dwaine L. Klarstrom
  • Patent number: 6544362
    Abstract: A two step heat treatment for Ni—Cr—Mo alloys containing from 12% to 23.5% chromium provides higher yield strength, high tensile strength and other mechanical properties comparable to those observed in similar alloys age-hardened according to current practices. This treatment is done over a total time of not more than 50 hours. However, the treatment works for only those alloys having alloying elements present in amounts according to an equation here disclosed.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: April 8, 2003
    Assignee: Haynes International, Inc.
    Inventors: Lee M. Pike, Jr., Dwaine L. Klarstrom, Michael F. Rothman
  • Publication number: 20030051783
    Abstract: A two step heat treatment for Ni—Cr—Mo alloys containing from 12% to 23.5% chromium provides higher yield strength, high tensile strength and other mechanical properties comparable to those observed in similar alloys age-hardened according to current practices. This treatment is done over a total time of not more than 50 hours. However, the treatment works for only those alloys having alloying elements present in amounts according to an equation here disclosed.
    Type: Application
    Filed: June 7, 2002
    Publication date: March 20, 2003
    Inventors: Lee M. Pike, Dwaine L. Klarstrom, Michael F. Rothman
  • Publication number: 20030049155
    Abstract: A two step heat treatment for Ni—Cr—Mo alloys containing from 12% to 23.5% chromium provides higher yield strength, high tensile strength and other mechanical properties comparable to those observed in similar alloys age-hardened according to current practices. This treatment is done over a total time of not more than 50 hours. However, the treatment works for only those alloys having alloying elements present in amounts according to an equation here disclosed.
    Type: Application
    Filed: June 28, 2001
    Publication date: March 13, 2003
    Inventors: Lee M. Pike, Dwaine L. Klarstrom, Michael F. Rothman
  • Patent number: 6503345
    Abstract: High molybdenum, corrosion-resistant alloys are provided with greatly increased thermal stability by controlling the atom concentrations to be NiaMobXcYdZe, where: a is between about 73 and 77 atom percent b is between about 18 and 23 atom percent X is one or more required substitutional alloying elements selected from Groups VI, VII and VIII of the Periodic Table and c does not exceed about 5 atom percent for any one element, Y is one or more optional substitutional alloying elements which may be present and d does not exceed about one atom percent for any one element, Z is one or more interstitial elements and e is as low as possible, not exceeding about 0.2 atom percent in total; and the sum of c and d is between about 2.5 and 7.5 atom percent.
    Type: Grant
    Filed: July 1, 1994
    Date of Patent: January 7, 2003
    Assignee: Haynes International, Inc.
    Inventor: Dwaine L. Klarstrom
  • Patent number: 4981647
    Abstract: A corrosion resistant metal alloy having improved formability and workability is disclosed which alloy contains in weight percent about 25% to 45% nickel, about 12% to 32% chromium, of at least one of 0.1% to 2.0% columbium, 0.2% to 4.0% tantalum, and 0.05% to 1.0% vanadium, up to about 0.20% carbon, about 0.05% to 0.50% nitrogen, about 0.001% to 0.02% boron and the balance being iron plus impurities and wherein the carbon and nitrogen content are controlled so that the amount of free carbon and nitrogen defined as ##EQU1## is greater than 0.14% and less than 0.29%. The alloy may also include in limited amounts one of aluminum, titanium, silicon, manganese, cobalt, molybdenum, tungsten, zirconium, yttrium, cerium and other rare earth metals.
    Type: Grant
    Filed: July 26, 1989
    Date of Patent: January 1, 1991
    Assignee: Haynes International, Inc.
    Inventors: Michael F. Rothman, Dwaine L. Klarstrom, George Y. Lai
  • Patent number: 4889696
    Abstract: Disclosed herein is an improved chemical reactor apparatus of the type suitable for supporting a catalyst during the high temperature oxidation of ammonia to form nitric acid which is fabricated from a superior nickel base superalloy containing about: 20 to 24% chromium, 10 to 20% tungsten, 1.0 to 3.5% molybdenum, 0.3 to 1% manganese, 0.2 to 0.75% silicon, 10 to 20% cobalt and in which certain relationhips among these alloying elements provide a structure which has very high creep strength and resistance to the corrosive environment.
    Type: Grant
    Filed: May 2, 1988
    Date of Patent: December 26, 1989
    Assignee: Haynes International, Inc.
    Inventor: Dwaine L. Klarstrom
  • Patent number: 4853185
    Abstract: A corrosion resistant metal alloy having improved formability and workability is disclosed which alloy contains in weight percent about 25% to 45% nickel, about 12% to 32% chromium, of at least one of 0.1% to 2.0% columbium, 0.2% to 4.0% tantalum, and 0.05% to 1.0% vanadium, up to about 0.20% carbon, about 0.05% to 0.50% nitrogen and the balance being iron plus impurities and wherein the carbon and nitrogen content are controlled so that the amount of free carbon and nitrogen defined as ##EQU1## is greater than 0.14% and less than 0.29%. The alloy may also include in limited amounts one of aluminum, titanium, silicon, manganese, cobalt, molydenum, tungsten, boron, zirconium, yttrium, cerium and other rare earth metals.
    Type: Grant
    Filed: February 10, 1988
    Date of Patent: August 1, 1989
    Assignee: Haynes International, IMC.
    Inventors: Michael F. Rothman, Dwaine L. Klarstrom, George Y. Lai
  • Patent number: 4762682
    Abstract: Disclosed herein is an improved chemical reactor apparatus of the type suitable for supporting a catalyst during the high temperature oxidation of ammonia to form nitric acid which is fabricated from a superior nickel base superalloy containing about: 20 to 24% chromium, 10 to 20% tungsten, 1.0 to 3.5% molybdenum, 0.3 to 1% manganese, 0.2 to 0.75% silicon, and up to 20% cobalt and in which certain relationships among these alloying elements provide a structure which has very high creep strength and resistance to the corrosive environment.
    Type: Grant
    Filed: August 21, 1986
    Date of Patent: August 9, 1988
    Assignee: Haynes International, Inc.
    Inventor: Dwaine L. Klarstrom
  • Patent number: 4476091
    Abstract: Disclosed is an oxidation resilient nickel alloy containing chromium, tungsten and molybdenum in a critical relationship that provides a combination of engineering properties including a high degree of dynamic oxidation resistance and superior strength.The alloy is especially suited for service under severe conditions, for example, as components of gas turbine engines.
    Type: Grant
    Filed: March 1, 1982
    Date of Patent: October 9, 1984
    Assignee: Cabot Corporation
    Inventor: Dwaine L. Klarstrom