Patents by Inventor Dwayne S. Yamasaki

Dwayne S. Yamasaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230057437
    Abstract: Methods for treating and managing pain in a patient with therapeutic neuromodulation and associated systems and methods are disclosed herein. Chronic or debilitating pain can be associated, for example, with a disease or condition of the abdominal or reproductive viscera. One aspect of the present technology is directed to methods that at least partially inhibit sympathetic neural activity in nerves proximate a target blood vessel of a diseased or damaged organ of a patient experiencing pain. Targeted sympathetic nerve activity can be modulated at least along afferent pathways which can improve a measurable parameter associated with the pain of the patient The modulation can be achieved, for example, using an intravascularly positioned catheter carrying a therapeutic assembly, e.g., a therapeutic assembly configured to use electrically-induced, thermally-induced, and/or chemically-induced approaches to modulate the target sympathetic nerve.
    Type: Application
    Filed: October 11, 2022
    Publication date: February 23, 2023
    Inventors: Carol Sullivan, Neil Barman, Dwayne S. Yamasaki
  • Patent number: 11515029
    Abstract: Methods for treating and managing pain in a patient with therapeutic neuromodulation and associated systems and methods are disclosed herein. Chronic or debilitating pain can be associated, for example, with a disease or condition of the abdominal or reproductive viscera. One aspect of the present technology is directed to methods that at least partially inhibit sympathetic neural activity in nerves proximate a target blood vessel of a diseased or damaged organ of a patient experiencing pain. Targeted sympathetic nerve activity can be modulated at least along afferent pathways which can improve a measurable parameter associated with the pain of the patient The modulation can be achieved, for example, using an intravascularly positioned catheter carrying a therapeutic assembly, e.g., a therapeutic assembly configured to use electrically-induced, thermally-induced, and/or chemically-induced approaches to modulate the target sympathetic nerve.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: November 29, 2022
    Assignee: MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L.
    Inventors: Carol Sullivan, Neil Barman, Dwayne S. Yamasaki
  • Patent number: 11051736
    Abstract: A nerve monitoring system facilitates monitoring an integrity of a nerve.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: July 6, 2021
    Assignee: Medtronic Xomed, Inc.
    Inventors: William C. Brunnett, David C. Hacker, John A. Meyer, Kevin Lee McFarlin, John Murdock Murphy, Dwayne S. Yamasaki, John N. Gardi
  • Publication number: 20210007671
    Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive electrodes are formed on the endotracheal tube. The conductive electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least wireless sensor is formed on the endotracheal tube, and is configured to wirelessly transmit information to a processing apparatus.
    Type: Application
    Filed: August 18, 2020
    Publication date: January 14, 2021
    Applicant: MEDTRONIC XOMED, INC.
    Inventors: David C. Hacker, Maria Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
  • Publication number: 20200398085
    Abstract: Methods for treating and managing pain in a patient with therapeutic neuromodulation and associated systems and methods are disclosed herein. Chronic or debilitating pain can be associated, for example, with a disease or condition of the abdominal or reproductive viscera. One aspect of the present technology is directed to methods that at least partially inhibit sympathetic neural activity in nerves proximate a target blood vessel of a diseased or damaged organ of a patient experiencing pain. Targeted sympathetic nerve activity can be modulated at least along afferent pathways which can improve a measurable parameter associated with the pain of the patient The modulation can be achieved, for example, using an intravascularly positioned catheter carrying a therapeutic assembly, e.g., a therapeutic assembly configured to use electrically-induced, thermally-induced, and/or chemically-induced approaches to modulate the target sympathetic nerve.
    Type: Application
    Filed: August 7, 2020
    Publication date: December 24, 2020
    Inventors: Carol Sullivan, Neil Barman, Dwayne S. Yamasaki
  • Patent number: 10842437
    Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive electrodes are formed on the endotracheal tube. The conductive electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least wireless sensor is formed on the endotracheal tube, and is configured to wirelessly transmit information to a processing apparatus.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: November 24, 2020
    Assignee: MEDTRONIC XOMED, INC.
    Inventors: David C. Hacker, Maria Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
  • Patent number: 10743817
    Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive electrodes are formed on the endotracheal tube. The conductive electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least wireless sensor is formed on the endotracheal tube, and is configured to wirelessly transmit information to a processing apparatus.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: August 18, 2020
    Assignee: Medtronic Xomed, Inc.
    Inventors: David C. Hacker, Maria Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
  • Patent number: 10737123
    Abstract: Methods for treating and managing pain in a patient with therapeutic neuromodulation and associated systems and methods are disclosed herein. Chronic or debilitating pain can be associated, for example, with a disease or condition of the abdominal or reproductive viscera. One aspect of the present technology is directed to methods that at least partially inhibit sympathetic neural activity in nerves proximate a target blood vessel of a diseased or damaged organ of a patient experiencing pain. Targeted sympathetic nerve activity can be modulated at least along afferent pathways which can improve a measurable parameter associated with the pain of the patient The modulation can be achieved, for example, using an intravascularly positioned catheter carrying a therapeutic assembly, e.g., a therapeutic assembly configured to use electrically-induced, thermally-induced, and/or chemically-induced approaches to modulate the target sympathetic nerve.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: August 11, 2020
    Assignee: MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L.
    Inventors: Carol Sullivan, Neil Barman, Dwayne S. Yamasaki
  • Publication number: 20190183424
    Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive electrodes are formed on the endotracheal tube. The conductive electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least wireless sensor is formed on the endotracheal tube, and is configured to wirelessly transmit information to a processing apparatus.
    Type: Application
    Filed: February 25, 2019
    Publication date: June 20, 2019
    Applicant: MEDTRONIC XOMED, INC.
    Inventors: David C. Hacker, Maria Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
  • Patent number: 10213160
    Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive electrodes are formed on the endotracheal tube. The conductive electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least wireless sensor is formed on the endotracheal tube, and is configured to wirelessly transmit information to a processing apparatus.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: February 26, 2019
    Assignee: Medtronic Xomed, Inc.
    Inventors: David C. Hacker, Maria Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
  • Patent number: 9918675
    Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive electrodes are formed on the endotracheal tube. The conductive electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least wireless sensor is formed on the endotracheal tube, and is configured to wirelessly transmit information to a processing apparatus.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: March 20, 2018
    Assignee: Medtronic Xomed, Inc.
    Inventors: David C. Hacker, Maria Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
  • Patent number: 9913594
    Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having a first cuff and a second cuff. Conductive ink electrodes are formed on an exterior surface of the first cuff. The conductive ink electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least one conductor is coupled to the conductive ink electrodes and is configured to carry the EMG signals received by the conductive ink electrodes to a processing apparatus.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 13, 2018
    Assignee: Medtronic Xomed, Inc.
    Inventors: Wenjeng Li, Dwayne S. Yamasaki
  • Publication number: 20170360371
    Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive electrodes are formed on the endotracheal tube. The conductive electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least wireless sensor is formed on the endotracheal tube, and is configured to wirelessly transmit information to a processing apparatus.
    Type: Application
    Filed: August 31, 2017
    Publication date: December 21, 2017
    Applicant: MEDTRONIC XOMED, INC.
    Inventors: David C. Hacker, Maria Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
  • Publication number: 20170347958
    Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface. Conductive electrodes are formed on the endotracheal tube. The conductive electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient. At least wireless sensor is formed on the endotracheal tube, and is configured to wirelessly transmit information to a processing apparatus.
    Type: Application
    Filed: August 22, 2017
    Publication date: December 7, 2017
    Applicant: MEDTRONIC XOMED, INC.
    Inventors: David C. Hacker, Maria Charles Vijay Stanislaus, Wenjeng Li, Dwayne S. Yamasaki, William C. Brunnett, Kevin L. McFarlin, James Britton Hissong, Robert K. Vaccaro, John M. Murphy, Carla A. Pagotto, Tino Schuler
  • Publication number: 20170319853
    Abstract: Endovascular nerve monitoring devices and associated systems and methods are disclosed herein. A nerve monitoring system configured in accordance with a particular embodiment of the present technology can include a shaft having a proximal portion and a distal portion and a nerve monitoring assembly at the distal portion. The shaft is configured to locate the distal portion intravascularly at a treatment site. The nerve monitoring assembly can include a bipolar stimulation electrode array and a bipolar recording electrode array disposed distal to the bipolar stimulation electrode assembly.
    Type: Application
    Filed: May 12, 2017
    Publication date: November 9, 2017
    Inventors: Dwayne S. Yamasaki, Bryan Courtney, Wenjeng Li, Kevin Mauch, Kevin McFarlin, Gabriel Brennan, David Gannon, David Hobbins, Brian Kelly, Stephen Nash, Matthew Bonner, Sean Ward
  • Patent number: 9763624
    Abstract: An apparatus for monitoring EMG signals of a patient's laryngeal muscles includes an endotracheal tube having an exterior surface and a first location configured to be positioned at the patient's vocal folds. A first electrode is formed on the exterior surface of the endotracheal tube substantially below the first location to receive EMG signals primarily from below the vocal folds. A second electrode is formed on the exterior surface of the endotracheal tube substantially above the first location to receive EMG signals primarily from above the vocal folds. The first and second electrodes are configured to receive the EMG signals from the laryngeal muscles when the endotracheal tube is placed in a trachea of the patient.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: September 19, 2017
    Assignee: Medtronic Xomed, Inc.
    Inventors: Maria Charles Vijay Stanislaus, David C. Hacker, Wenjeng Li, David J. Little, Carla A. Pagotto, Dwayne S. Yamasaki
  • Publication number: 20170164854
    Abstract: A nerve monitoring system facilitates monitoring an integrity of a nerve.
    Type: Application
    Filed: February 27, 2017
    Publication date: June 15, 2017
    Applicant: Medtronic Xomed, Inc.
    Inventors: William C. Brunnett, David C. Hacker, John A. Meyer, Kevin Lee McFarlin, John Murdock Murphy, Dwayne S. Yamasaki, John N. Gardi
  • Patent number: 9579037
    Abstract: A nerve monitoring system facilitates monitoring an integrity of a nerve.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: February 28, 2017
    Assignee: Medtronic Xomed, Inc.
    Inventors: William C. Brunnett, David C. Hacker, John A. Meyer, Kevin Lee McFarlin, John Murdock Murphy, Dwayne S. Yamasaki, John N. Gardi
  • Publication number: 20160287325
    Abstract: Endovascular nerve monitoring devices and associated systems and methods are disclosed herein. A nerve monitoring system configured in accordance with a particular embodiment of the present technology can include a shaft having a proximal portion and a distal portion and a nerve monitoring assembly at the distal portion. The shaft is configured to locate the distal portion intravascularly at a treatment site. The nerve monitoring assembly can include a bipolar stimulation electrode array and a bipolar recording electrode array disposed distal to the bipolar stimulation electrode assembly.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 6, 2016
    Inventors: Dwayne S. Yamasaki, Bryan Courtney, Wenjeng Li, Kevin Mauch, Kevin McFarlin, Gabriel Brennan, David Gannon, David Hobbins, Brian Kelly, Stephen Nash, Matthew Bonner, Sean Ward
  • Patent number: 9327123
    Abstract: Endovascular nerve monitoring devices and associated systems and methods are disclosed herein. A nerve monitoring system configured in accordance with a particular embodiment of the present technology can include a shaft having a proximal portion and a distal portion and a nerve monitoring assembly at the distal portion. The shaft is configured to locate the distal portion intravascularly at a treatment site. The nerve monitoring assembly can include a bipolar stimulation electrode array and a bipolar recording electrode array disposed distal to the bipolar stimulation electrode assembly.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: May 3, 2016
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Dwayne S. Yamasaki, Bryan Courtney, Wenjeng Li, Kevin Mauch, Kevin McFarlin, Gabriel Brennan, David Gannon, David Hobbins, Brian Kelly, Stephen Nash, Matthew Bonner, Sean Ward