Patents by Inventor Dwight C. Dawson

Dwight C. Dawson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7415401
    Abstract: A process for constructing a three-dimensional geologic model of a subsurface earth volume wherein resolution scales of multiple diverse data types, including seismic data, are accounted for by generating multiple frequency passband models and combining them together to form the complete geologic model. Preferably, a model is generated for each of a low-frequency passband, a mid-frequency passband, and a high-frequency passband. When integrating seismic data into the modeling process, the seismic-frequency passband constitutes the mid-frequency passband model. The process further contemplates updating tentative frequency-passband models through optimization of assigned rock property values in each tentative model according to specified geological criteria. Such optimization is carried out by perturbation of the rock property values in a manner wherein the frequency content of each model is maintained.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: August 19, 2008
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Craig S. Calvert, Glen W. Bishop, Yuan-zhe Ma, Tingting Yao, J. Lincoln Foreman, Keith B. Sullivan, Dwight C. Dawson, Thomas A. Jones
  • Patent number: 6757217
    Abstract: Near-offset and far-offset seismic data volumes are time-aligned by first selecting a plurality of time shifts. The near-offset and far-offset seismic data volumes are cross-correlated at the plurality of time shifts. An initial time-shift volume and a maximum correlation volume are created from the maximal cross-correlations at the plurality of time shifts. Areas of high time shift from the initial time-shift volume and areas of low cross-correlation from the maximum correlation volume are determined. The determined areas of high time shift and low cross-correlation are filtered from the initial time-shift volume, generating a filtered time-shift volume. The filtered time-shift volume is applied to the far-offset seismic volume to generate a time-aligned far-offset volume.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: June 29, 2004
    Assignee: ExxonMobil Upstream Research Company
    Inventors: John E. Eastwood, Brian P. West, Michael D. Gross, Dwight C. Dawson, David H. Johnston
  • Patent number: 6662112
    Abstract: AVO anomalies are classified in near-offset and far-offset seismic data volumes, by first calculating a plurality of initial AVO seismic attributes representative of the offset seismic data volumes. A probabilistic neural network is constructed from the calculated initial AVO seismic attributes. AVO anomaly classifications are calculated in a portion of the offset seismic data volumes. The preceding steps are repeated until the calculated AVO anomaly classifications in the portion of the offset seismic data volumes are satisfactory. AVO anomaly classifications are calculated throughout the offset seismic data volumes using the constructed probabilistic neural network.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: December 9, 2003
    Assignee: ExxonMobil Upstream Research Company
    Inventors: John E. Eastwood, Brian P. West, Michael D. Gross, Dwight C. Dawson, David H. Johnston
  • Publication number: 20030046006
    Abstract: AVO anomalies are classified in near-offset and far-offset seismic data volumes, by first calculating a plurality of initial AVO seismic attributes representative of the offset seismic data volumes. A probabilistic neural network is constructed from the calculated initial AVO seismic attributes. AVO anomaly classifications are calculated in a portion of the offset seismic data volumes. The preceding steps are repeated until the calculated AVO anomaly classifications in the portion of the offset seismic data volumes are satisfactory. AVO anomaly classifications are calculated throughout the offset seismic data volumes using the constructed probabilistic neural network.
    Type: Application
    Filed: August 29, 2002
    Publication date: March 6, 2003
    Applicant: EXXONMOBIL UPSTREAM RESEARCH COMPANY
    Inventors: John E. Eastwood, Brian P. West, Michael D. Gross, Dwight C. Dawson, David H. Johnston
  • Publication number: 20030043693
    Abstract: Near-offset and far-offset seismic data volumes are time-aligned by first selecting a plurality of time shifts. The near-offset and far-offset seismic data volumes are cross-correlated at the plurality of time shifts. An initial time-shift volume and a maximum correlation volume are created from the maximal cross-correlations at the plurality of time shifts. Areas of high time shift from the initial time-shift volume and areas of low cross-correlation from the maximum correlation volume are determined. The determined areas of high time shift and low cross-correlation are filtered from the initial time-shift volume, generating a filtered time-shift volume. The filtered time-shift volume is applied to the far-offset seismic volume to generate a time-aligned far-offset volume.
    Type: Application
    Filed: August 29, 2002
    Publication date: March 6, 2003
    Inventors: John E. Eastwood, Brian P. West, Michael D. Gross, Dwight C. Dawson, David H. Johnston
  • Publication number: 20020042702
    Abstract: A process for constructing a three-dimensional geologic model of a subsurface earth volume wherein resolution scales of multiple diverse data types, including seismic data, are accounted for by generating multiple frequency passband models and combining them together to form the complete geologic model. Preferably, a model is generated for each of a low-frequency passband, a mid-frequency passband, and a high-frequency passband. When integrating seismic data into the modeling process, the seismic-frequency passband constitutes the mid-frequency passband model. The process further contemplates updating tentative frequency-passband models through optimization of assigned rock property values in each tentative model according to specified geological criteria. Such optimization is carried out by perturbation of the rock property values in a manner wherein the frequency content of each model is maintained.
    Type: Application
    Filed: August 21, 2001
    Publication date: April 11, 2002
    Inventors: Craig S. Calvert, Glen W. Bishop, Yuan-zhe Ma, Tingting Yao, J. Lincoln Foreman, Keith B. Sullivan, Dwight C. Dawson, Thomas A. Jones