Patents by Inventor Dwight K. Elvey

Dwight K. Elvey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10310015
    Abstract: An integrated circuit device includes a plurality of flip flops configured into a scan chain. The plurality of flip flops includes at least flip flop of a first type and at least one flip flop of a second type. A method includes generating a first scan clock signal for loading scan data into at least one flip flop of a first type, generating a second scan clock signal and a third scan clock signal for loading the scan data into at least one flip flop of a second type, and loading a test pattern into a scan chain defined by the at least flip flop of the first type and the at least one flip flop of the second type responsive to the first, second, and third scan clock signals.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: June 4, 2019
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Thomas A. Clouqueur, Dwight K. Elvey, Kamran Zarrineh
  • Patent number: 9000806
    Abstract: A device may include a latch activated during a second phase of a clock cycle; a clock gating component to control when a clock signal is to reach the latch; a destination storage element activated during a first phase of the clock cycle, where a logical path exists from the latch to the destination storage element; and a blocking element located in the logical path from the latch to the destination storage element, where the blocking element includes, as a first input, an output of the latch and, as a second input, an output of the clock gating component, and where the blocking element prevents an output value of the latch from changing when the clock gating component is not enabled and does not prevent the output value of the latch from changing when the clock gating element is enabled.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: April 7, 2015
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Dwight K. Elvey, Someshwar Gatty
  • Publication number: 20150026532
    Abstract: An integrated circuit device includes a plurality of flip flops configured into a scan chain. The plurality of flip flops includes at least flip flop of a first type and at least one flip flop of a second type. A method includes generating a first scan clock signal for loading scan data into at least one flip flop of a first type, generating a second scan clock signal and a third scan clock signal for loading the scan data into at least one flip flop of a second type, and loading a test pattern into a scan chain defined by the at least flip flop of the first type and the at least one flip flop of the second type responsive to the first, second, and third scan clock signals.
    Type: Application
    Filed: July 19, 2013
    Publication date: January 22, 2015
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Thomas A. Clouqueur, Dwight K. Elvey, Kamran Zarrineh
  • Patent number: 8850278
    Abstract: A fault tolerant scannable glitch latch for use with scan chains that enable reset, debug and repairability of machines and parts is described. A scan shift enable signal controls a switch such that a stuck-at zero fault on a data input line is prevented from driving voltage to a state node or pulling the state node high during a scan chain operation. Propagation of the stuck-at zero fault is therefore eliminated. The scan shift enable signal also controls a switch that enables a parallel path to ground for the scan data and state node which would otherwise have been driven high due to the stuck-at zero fault.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: September 30, 2014
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Kevin M. Gillespie, Joseph R. Siegel, Dwight K. Elvey, Harry R. Fair
  • Publication number: 20130257479
    Abstract: A device may include a latch activated during a second phase of a clock cycle; a clock gating component to control when a clock signal is to reach the latch; a destination storage element activated during a first phase of the clock cycle, where a logical path exists from the latch to the destination storage element; and a blocking element located in the logical path from the latch to the destination storage element, where the blocking element includes, as a first input, an output of the latch and, as a second input, an output of the clock gating component, and where the blocking element prevents an output value of the latch from changing when the clock gating component is not enabled and does not prevent the output value of the latch from changing when the clock gating element is enabled.
    Type: Application
    Filed: May 31, 2013
    Publication date: October 3, 2013
    Inventors: Dwight K. ELVEY, Someshwar GATTY
  • Patent number: 8461874
    Abstract: A device may include a latch activated during a second phase of a clock cycle; a clock gating component to control when a clock signal is to reach the latch; a destination storage element activated during a first phase of the clock cycle, where a logical path exists from the latch to the destination storage element; and a blocking element located in the logical path from the latch to the destination storage element, where the blocking element includes, as a first input, an output of the latch and, as a second input, an output of the clock gating component, and where the blocking element prevents an output value of the latch from changing when the clock gating component is not enabled and does not prevent the output value of the latch from changing when the clock gating element is enabled.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: June 11, 2013
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Dwight K. Elvey, Premlatha Paga
  • Publication number: 20130021064
    Abstract: A device may include a latch activated during a second phase of a clock cycle; a clock gating component to control when a clock signal is to reach the latch; a destination storage element activated during a first phase of the clock cycle, where a logical path exists from the latch to the destination storage element; and a blocking element located in the logical path from the latch to the destination storage element, where the blocking element includes, as a first input, an output of the latch and, as a second input, an output of the clock gating component, and where the blocking element prevents an output value of the latch from changing when the clock gating component is not enabled and does not prevent the output value of the latch from changing when the clock gating element is enabled.
    Type: Application
    Filed: July 20, 2011
    Publication date: January 24, 2013
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Dwight K. Elvey, Premlatha Paga
  • Publication number: 20120166899
    Abstract: A fault tolerant scannable glitch latch for use with scan chains that enable reset, debug and repairability of machines and parts is described. A scan shift enable signal controls a switch such that a stuck-at zero fault on a data input line is prevented from driving voltage to a state node or pulling the state node high during a scan chain operation. Propagation of the stuck-at zero fault is therefore eliminated. The scan shift enable signal also controls a switch that enables a parallel path to ground for the scan data and state node which would otherwise have been driven high due to the stuck-at zero fault.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Kevin M. Gillespie, Joseph R. Siegel, Dwight K. Elvey, Harry R. Fair
  • Patent number: 7817761
    Abstract: An integrated circuit includes a variable delay circuit configured to generate at least one delayed clock signal based on a first clock signal and a first control signal. The integrated circuit includes a control circuit configured to generate a count value based on a second input signal and a second control signal. The first clock signal is a first version of the at least one delayed clock signal. At least one of the second input signal and the second control signal is a second version of the at least one delayed clock signal and the count value is indicative of a frequency characteristic of the at least one delayed clock signal. The integrated circuit is configured to monotonically vary the first control signal over a range of values and the count value is determined for individual values of the control signal.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: October 19, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Meei-Ling Chiang, Dwight K. Elvey, Sanjeev Maheshwari, Emerson S. Fang
  • Patent number: 7685487
    Abstract: Various embodiments of methods and systems for simultaneously testing multiple cores included in an integrated circuit are disclosed. In one embodiment, an integrated circuit may include two or more logic cores. The IC may also include structural scan test hardware coupled to the cores. This structural scan test hardware may be capable of inputting scan test vector data into scan registers associated with each of the logic cores, simultaneously executing a scan test on the logic cores included in the IC, and outputting the results of the scan tests for multiple cores to automated test equipment (ATE) simultaneously. In one embodiment, elements of the results of testing for multiple cores may be interleaved on a single output line such that an element of test result data from each core is present on an input channel to the ATE during each strobe window.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: March 23, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ting-Yu Kuo, Dwight K. Elvey
  • Publication number: 20080297216
    Abstract: An integrated circuit includes a variable delay circuit configured to generate at least one delayed clock signal based on a first clock signal and a first control signal. The integrated circuit includes a control circuit configured to generate a count value based on a second input signal and a second control signal. The first clock signal is a first version of the at least one delayed clock signal. At least one of the second input signal and the second control signal is a second version of the at least one delayed clock signal and the count value is indicative of a frequency characteristic of the at least one delayed clock signal. The integrated circuit is configured to monotonically vary the first control signal over a range of values and the count value is determined for individual values of the control signal.
    Type: Application
    Filed: June 1, 2007
    Publication date: December 4, 2008
    Inventors: Meei-Ling Chiang, Dwight K. Elvey, Sanjeev Maheshwari, Emerson S. Fang
  • Patent number: 6636997
    Abstract: The initialization process and structure of the system ensure that during loading of random data a 1-hot condition is maintained to the 1-hot multiplexer so as to prevent contention or a high current state. The present invention further improves observability of intermediate stages by preventing random data feeding of the state elements in scan chains that cannot tolerate random data. A scan chain having only scan registers that can receive random data is referred to as a LBIST Random Scan Chain (LRSC) and a scan chain having one or more scan registers that cannot tolerate and cannot receive random data is referred to as a “LBIST Non-random Scan Chain” (LNSC). A PRPG generates random data having a plurality of bit values to the LRSCs which is then passed to a multiple input shift register (MISR). The LNSCs do not receive random data from the PRPG but instead receive bit values from another scan chain.
    Type: Grant
    Filed: October 24, 2000
    Date of Patent: October 21, 2003
    Assignee: Fujitsu Limited
    Inventors: Paul Wong, Mark O. Porter, Dwight K. Elvey