Patents by Inventor Dwight O'Dell Deay, III
Dwight O'Dell Deay, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12110532Abstract: The present invention is broadly concerned with new in vitro glycosylation methods that provide rational approaches for producing glycosylated proteins, and the use of glycosylated proteins. In more detail, the present invention comprises methods of glycosylating a starting protein having an amino sidechain with a nucleophilic moiety, comprising the step of reacting the protein with a carbohydrate having an oxazoline moiety on the reducing end thereof, to covalently bond the amino sidechain of the starting protein with the oxazoline moiety, wherein the glycosylated protein substantially retains the structure and function of the starting protein. Target proteins include oxidase, oxidoreductase and dehydrogenase enzymes. The glycosylated proteins advantageously have molecular weights of at least about 7500 Daltons. In a further embodiment, the present invention concerns the use of glycosylated proteins, fabricated by the methods disclosed herein, in the assembly of amperometric biosensors.Type: GrantFiled: February 16, 2023Date of Patent: October 8, 2024Assignee: DESIGN- ZYME LLCInventors: Peter Albert Petillo, Dwight O'Dell Deay, III
-
Publication number: 20240156958Abstract: The present invention is broadly concerned with a vaccine composition comprising a central carrier, at least one linear carbohydrate molecule, and at least one immunogen molecule, wherein each of the at least one linear carbohydrate molecule and at least one immunogen molecule are covalently bound to the carrier via respective covalent linkages. Vaccine compositions comprising multivalent carriers and related methods may find various therapeutic and prophylactic applications for inducing an immune response against, treating, or preventing a bacterial, viral, fungal, or protozoan infection, including, but are not limited to, coronaviruses, Lyme Disease, Chlamydia, and the related diseases thereof.Type: ApplicationFiled: November 1, 2023Publication date: May 16, 2024Inventors: Peter Albert Petillo, Dwight O'Dell Deay, III, Mary Beth Carter
-
Publication number: 20240139312Abstract: Vaccine compositions comprising at least one modified immunogen via in vitro glycosylation methods that provide a rational approach for generating glycosylated versions of immunogens via the reducing end of a linear carbohydrate, the reducing end containing an N-acyl-2-amino moiety. Vaccine compositions comprising a plurality of heterologous immunogens associated with a multivalent carrier, wherein at least one immnunogen is glycosylated. Vaccine compositions comprising multivalent carriers and related methods using the vaccine compositions in various therapeutic and prophylactic applications for inducing an immune response against, treating, or preventing a bacterial, viral, fungal, or protozoan infection.Type: ApplicationFiled: May 11, 2023Publication date: May 2, 2024Inventors: Peter Albert Petillo, Dwight O'Dell Deay, III, Michael Gregory Branden, Erik Naylor, Mary Beth Carter
-
Publication number: 20230203557Abstract: The present invention is broadly concerned with new in vitro glycosylation methods that provide rational approaches for producing glycosylated proteins, and the use of glycosylated proteins. In more detail, the present invention comprises methods of glycosylating a starting protein having an amino sidechain with a nucleophilic moiety, comprising the step of reacting the protein with a carbohydrate having an oxazoline moiety on the reducing end thereof, to covalently bond the amino sidechain of the starting protein with the oxazoline moiety, wherein the glycosylated protein substantially retains the structure and function of the starting protein. Target proteins include oxidase, oxidoreductase and dehydrogenase enzymes. The glycosylated proteins advantageously have molecular weights of at least about 7500 Daltons. In a further embodiment, the present invention concerns the use of glycosylated proteins, fabricated by the methods disclosed herein, in the assembly of amperometric biosensors.Type: ApplicationFiled: February 16, 2023Publication date: June 29, 2023Applicant: Design-Zyme LLCInventors: Peter Albert Petillo, Dwight O'Dell Deay, III
-
Patent number: 11643676Abstract: The present invention is broadly concerned with new in vitro glycosylation methods that provide rational approaches for producing glycosylated proteins, and the use of glycosylated proteins. In more detail, the present invention comprises methods of glycosylating a starting protein having an amino sidechain with a nucleophilic moiety, comprising the step of reacting the protein with a carbohydrate having an oxazoline moiety on the reducing end thereof, to covalently bond the amino sidechain of the starting protein with the oxazoline moiety, wherein the glycosylated protein substantially retains the structure and function of the starting protein. Target proteins include oxidase, oxidoreductase and dehydrogenase enzymes. The glycosylated proteins advantageously have molecular weights of at least about 7500 Daltons. In a further embodiment, the present invention concerns the use of glycosylated proteins, fabricated by the methods disclosed herein, in the assembly of amperometric biosensors.Type: GrantFiled: April 8, 2021Date of Patent: May 9, 2023Assignee: Design-Zyme LLCInventors: Peter Albert Petillo, Dwight O'Dell Deay, III, Michael Gregory Branden
-
Publication number: 20210230661Abstract: The present invention is broadly concerned with new in vitro glycosylation methods that provide rational approaches for producing glycosylated proteins, and the use of glycosylated proteins. In more detail, the present invention comprises methods of glycosylating a starting protein having an amino sidechain with a nucleophilic moiety, comprising the step of reacting the protein with a carbohydrate having an oxazoline moiety on the reducing end thereof, to covalently bond the amino sidechain of the starting protein with the oxazoline moiety, wherein the glycosylated protein substantially retains the structure and function of the starting protein. Target proteins include oxidase, oxidoreductase and dehydrogenase enzymes. The glycosylated proteins advantageously have molecular weights of at least about 7500 Daltons. In a further embodiment, the present invention concerns the use of glycosylated proteins, fabricated by the methods disclosed herein, in the assembly of amperometric biosensors.Type: ApplicationFiled: April 8, 2021Publication date: July 29, 2021Applicant: Design-Zyme LLCInventors: Peter Albert Petillo, Dwight O'Dell Deay, III, Michael Gregory Branden
-
Patent number: 11021730Abstract: The present invention is broadly concerned with new in vitro glycosylation methods that provide rational approaches for producing glycosylated proteins, and the use of glycosylated proteins. In more detail, the present invention comprises methods of glycosylating a starting protein having an amino sidechain with a nucleophilic moiety, comprising the step of reacting the protein with a carbohydrate having an oxazoline moiety on the reducing end thereof, to covalently bond the amino sidechain of the starting protein with the oxazoline moiety, wherein the glycosylated protein substantially retains the structure and function of the starting protein. Target proteins include oxidase, oxidoreductase and dehydrogenase enzymes. The glycosylated proteins advantageously have molecular weights of at least about 7500 Daltons. In a further embodiment, the present invention concerns the use of glycosylated proteins, fabricated by the methods disclosed herein, in the assembly of amperometric biosensors.Type: GrantFiled: December 19, 2018Date of Patent: June 1, 2021Inventors: Peter Albert Petillo, Dwight O'Dell Deay, III, Michael Gregory Branden
-
Publication number: 20190185900Abstract: The present invention is broadly concerned with new in vitro glycosylation methods that provide rational approaches for producing glycosylated proteins, and the use of glycosylated proteins. In more detail, the present invention comprises methods of glycosylating a starting protein having an amino sidechain with a nucleophilic moiety, comprising the step of reacting the protein with a carbohydrate having an oxazoline moiety on the reducing end thereof, to covalently bond the amino sidechain of the starting protein with the oxazoline moiety, wherein the glycosylated protein substantially retains the structure and function of the starting protein. Target proteins include oxidase, oxidoreductase and dehydrogenase enzymes. The glycosylated proteins advantageously have molecular weights of at least about 7500 Daltons. In a further embodiment, the present invention concerns the use of glycosylated proteins, fabricated by the methods disclosed herein, in the assembly of amperometric biosensors.Type: ApplicationFiled: December 19, 2018Publication date: June 20, 2019Applicant: Design-Zyme LLCInventors: Peter Albert Petillo, Dwight O'Dell Deay, III, Michael Gregory Branden