Patents by Inventor Eberhard Sowka

Eberhard Sowka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10486228
    Abstract: A method for continuous casting of thin slabs may involve feeding a molten metal into a mold, molding a partially solidified thin-slab strand from the molten metal in the mold, reducing a flow rate of the molten metal in the partially solidified thin-slab strand by way of an electromagnetic brake positioned in a region of the mold, and removing the partially solidified thin-slab strand from the mold by way of a strand guiding system. Unsolidified parts of the partially solidified thin-slab strand may be stirred by an electromagnetic stirrer arranged underneath the mold downstream along a strand takeoff direction of the thin-slab strand. Further, a traveling electromagnetic field may be produced by the electromagnetic stirrer in a region of the thin-slab strand that is at a distance from the mold of between 20 and 7000 millimeters along the strand takeoff direction.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: November 26, 2019
    Assignees: THYSSENKRUPP STEEL EUROPE AG, THYSSENKRUPP AG
    Inventors: Eberhard Sowka, Frank Spelleken, Andy Rohe, Helmut Osterburg
  • Patent number: 10184159
    Abstract: A method is disclosed for the operationally reliable production of a cold-rolled flat steel product of ?0.5 mm in thickness for deep-drawing and ironing applications. In the method, a steel melt which (in wt %) comprises up to 0.008% C, up to 0.005% Al, up to 0.043% Si, 0.15-0.5% Mn, up to 0.02% P, up to 0.03% S, up to 0.020% N and in each case optionally up to 0.03% Ti and up to 0.03% Nb and, as a remainder, iron and unavoidable impurities, is, with the omission of a Ca treatment, subjected to a secondary metallurgical treatment which, in addition to a vacuum treatment, comprises a ladle furnace treatment and during which the steel melt to be treated is kept under a slag, the Mn and Fe contents of which are, in sum total, <15 wt %. From the steel melt, a thin slab or a cast strip are produced, which are subsequently hot-rolled to form a hot strip with a thickness of <2.5 mm and wound to form a coil. Subsequently, the hot strips are cold-rolled to form a flat steel product of up to 0.5 mm in thickness.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: January 22, 2019
    Assignees: THYSSENKRUPP STEEL EUROPE AG, THYSSENKRUPP RASSELSTEIN GMBH
    Inventors: Erhard Holleck, Eberhard Sowka, Burkhard Kaup, Stephan Schiester
  • Publication number: 20170036267
    Abstract: A method for continuous casting of thin slabs may involve feeding a molten metal into a mold, molding a partially solidified thin-slab strand from the molten metal in the mold, reducing a flow rate of the molten metal in the partially solidified thin-slab strand by way of an electromagnetic brake positioned in a region of the mold, and removing the partially solidified thin-slab strand from the mold by way of a strand guiding system. Unsolidified parts of the partially solidified thin-slab strand may be stirred by an electromagnetic stirrer arranged underneath the mold downstream along a strand takeoff direction of the thin-slab strand. Further, a traveling electromagnetic field may be produced by the electromagnetic stirrer in a region of the thin-slab strand that is at a distance from the mold of between 20 and 7000 millimeters along the strand takeoff direction.
    Type: Application
    Filed: April 15, 2015
    Publication date: February 9, 2017
    Applicants: ThyssenKrupp Steel Europe AG, ThyssenKrupp AG
    Inventors: Eberhard Sowka, Frank Spelleken, Andy Rohe, Helmut Osterburg
  • Publication number: 20160010172
    Abstract: A method is disclosed for the operationally reliable production of a cold-rolled flat steel product of ?0.5 mm in thickness for deep-drawing and ironing applications. In the method, a steel melt which (in wt %) comprises up to 0.008% C, up to 0.005% Al, up to 0.043% Si, 0.15-0.5% Mn, up to 0.02% P, up to 0.03% S, up to 0.020% N and in each case optionally up to 0.03% Ti and up to 0.03% Nb and, as a remainder, iron and unavoidable impurities, is, with the omission of a Ca treatment, subjected to a secondary metallurgical treatment which, in addition to a vacuum treatment, comprises a ladle furnace treatment and during which the steel melt to be treated is kept under a slag, the Mn and Fe contents of which are, in sum total, <15 wt %. From the steel melt, a thin slab or a cast strip are produced, which are subsequently hot-rolled to form a hot strip with a thickness of <2.5 mm and wound to form a coil. Subsequently, the hot strips are cold-rolled to form a flat steel product of up to 0.5 mm in thickness.
    Type: Application
    Filed: March 6, 2014
    Publication date: January 14, 2016
    Inventors: Erhard Holleck, Eberhard Sowka, Burkhard Kaup, Stephan Schiester
  • Publication number: 20140290704
    Abstract: A method and a device for cleaning a surface of a steel product, wherein a fluid jet is directed from a nozzle, which is located in a position associated with an edge of the surface to be cleaned, onto the surface, wherein, during the cleaning operation, there is produced a relative movement between the nozzle and the steel product and the fluid jet is orientated transversely relative to the direction of the relative movement of the steel product and nozzle. Another nozzle is located in a position which is associated with the edge of the surface, which edge is opposite the edge of the steel product associated with the first nozzle, wherein another fluid jet is directed onto the surface without any overlap, wherein the striking region of the fluid jets is spaced apart from the edge which is associated with the nozzle which produces the fluid jet.
    Type: Application
    Filed: November 22, 2012
    Publication date: October 2, 2014
    Inventor: Eberhard Sowka
  • Publication number: 20140230966
    Abstract: A method for producing a grain-oriented electrical steel strip or sheet, in which the slab temperature of a thin slab consisting of a steel having (% wt.) Si: 2-6.5%, C: 0.02-0.15%, S: 0.01-0.1%, Cu: 0.1-0.5%, wherein the Cu to S content ratio is % Cu/% S>4, Mn: up to 0.1%, wherein the Mn to S content ratio is % Mn/% S<2.5, and optional contents of N, Al, Ni, Cr, Mo, Sn, V, Nb, is homogenised to 1000-1200° C. The thin slab is hot rolled into a hot strip having a thickness of 0.5-4.0 mm at an initial hot-rolling temperature of <=1030° C. and a final hot-rolling temperature of >=710° C., with a thickness reduction in the first and in the second hot-forming passes of >=40%. The hot strip is cooled, coiled, and cold rolled into a cold strip having a final thickness of 0.15-0.50 mm. An annealing separator is applied onto the annealed cold strip to form a Goss texture.
    Type: Application
    Filed: September 20, 2012
    Publication date: August 21, 2014
    Inventors: Andreas Boettcher, Ludger Lahn, Gerhard Inden, Eberhard Sowka
  • Patent number: 8088229
    Abstract: A method for producing high-quality grain oriented magnetic steel sheet utilizes a steel alloy with (in wt %) Si: 2.5-4.0%, C: 0.02-0.10%, Al: 0.01-0.065%, N: 0.003-0.015%. The method utilizes an operational sequence whose individual steps (secondary metallurgical treatment of the molten metal, continuous casting of the molten metal into a strand, dividing of the strand into thin slabs, heating of the thin slabs, continuous hot rolling of the thin slabs into hot strip, cooling of the hot strip, coiling of the hot strip, cold rolling of the hot strip into cold strip, recrystallization and decarburization annealing of the cold strip, application of an annealing separator, final annealing of the recrystallization and decarburization annealed cold strip to form a Goss texture) are harmonized with one another, so that a magnetic steel sheet with optimized electromagnetic properties is obtained using conventional apparatus.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: January 3, 2012
    Assignee: ThyssenKrupp Steel AG
    Inventors: Klaus Günther, Ludger Lahn, Andreas Ploch, Eberhard Sowka
  • Patent number: 8038806
    Abstract: A method, which makes it possible to economically produce high-quality grain oriented magnetic steel sheet, utilizes a steel alloy with (in wt %) Si: 2.5-4.0%, C: 0.01-0.10 %, Mn: 0.02-0.50%, S and Se in contents, whose total amounts to 0.005-0.04%. The method utilizes an operational sequence whose individual routine steps (secondary metallurgical treatment of the molten metal in a vacuum-or ladle facility, continuous casting of the molten metal into a strand, dividing of the strand, heating in a facility standing inline, continuous hot rolling in a multi-stand hot rolling mill standing inline, cooling, coiling, cold rolling, recrystallization and decarburization annealing, application of an annealing separator, final annealing to form a Goss texture) are harmonized with one another, so that a magnetic steel sheet with optimized electromagnetic properties is obtained using conventional apparatus.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: October 18, 2011
    Assignee: ThyssenKrupp Steel AG
    Inventors: Klaus Günther, Ludger Lahn, Andreas Ploch, Eberhard Sowka
  • Publication number: 20090139609
    Abstract: A method, which makes it possible to economically produce high-quality grain oriented magnetic steel sheet, utilizes a steel alloy with (in wt %) Si: 2.5-4.0%, C: 0.01-0.10%, Mn: 0.02-0.50%, S and Se in contents, whose total amounts to 0.005-0.04%. The method utilizes an operational sequence whose individual routine steps (secondary metallurgical treatment of the molten metal in a vacuum—or ladle facility, continuous casting of the molten metal into a strand, dividing of the strand, heating in a facility standing inline, continuous hot rolling in a multi-stand hot rolling mill standing inline, cooling, coiling, cold rolling, recrystallization and decarburization annealing, application of an annealing separator, final annealing to form a Goss texture) are harmonized with one another, so that a magnetic steel sheet with optimized electromagnetic properties is obtained using conventional apparatus.
    Type: Application
    Filed: July 20, 2006
    Publication date: June 4, 2009
    Applicant: ThyssenKrupp Steel AG
    Inventors: Klaus Gunther, Ludger Lahn, Andreas Ploch, Eberhard Sowka
  • Publication number: 20080216985
    Abstract: A method for producing high-quality grain oriented magnetic steel sheet utilizes a steel alloy with (in wt %) Si: 2.5-4.0%, C: 0.02-0.10%, Al: 0.01-0.065%, N: 0.003-0.015%. The method utilizes an operational sequence whose individual steps (secondary metallurgical treatment of the molten metal, continuous casting of the molten metal into a strand, dividing of the strand into thin slabs, heating of the thin slabs, continuous hot rolling of the thin slabs into hot strip, cooling of the hot strip, coiling of the hot strip, cold rolling of the hot strip into cold strip, recrystallization and decarburization annealing of the cold strip, application of an annealing separator, final annealing of the recrystallization and decarburization annealed cold strip to form a Goss texture) are harmonized with one another, so that a magnetic steel sheet with optimized electromagnetic properties is obtained using conventional apparatus.
    Type: Application
    Filed: July 20, 2006
    Publication date: September 11, 2008
    Inventors: Klaus Gunther, Ludger Lahn, Andreas Ploch, Eberhard Sowka
  • Patent number: 6835253
    Abstract: The invention relates to a method for producing a hot strip, in particular for producing a hot strip intended for the production of a cold strip with good deep-drawing characteristics; in which a steel melt comprising (in % by weight) C:≦0.07%, Si:≦0.5%, Mn:≦2.5%, Al:≦0.1%, N:≦0.01%, P:≦0.025, B:≦0.05, if need be up to a total of 0.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: December 28, 2004
    Assignee: Thyssenkrupp Stahl AG
    Inventors: Rudlof Kawalla, Bernhard Engl, Thomas Heller, Wolfgang Rasim, Eberhard Sowka