Patents by Inventor Ebony L. Mays

Ebony L. Mays has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961838
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a first isolation structure over a first end of a fin. A gate structure is over the fin and is spaced apart from the first isolation structure along the direction. A second isolation structure is over a second end of the fin, the second end opposite the first end. The second isolation structure is spaced apart from the gate structure. The first isolation structure and the second isolation structure both comprise a first dielectric material laterally surrounding a recessed second dielectric material distinct from the first dielectric material. The recessed second dielectric material laterally surrounds at least a portion of a third dielectric material different from the first and second dielectric materials.
    Type: Grant
    Filed: May 3, 2022
    Date of Patent: April 16, 2024
    Assignee: Intel Corporation
    Inventors: Byron Ho, Chun-Kuo Huang, Erica Thompson, Jeanne Luce, Michael L. Hattendorf, Christopher P. Auth, Ebony L. Mays
  • Publication number: 20230128779
    Abstract: Disclosed herein are methods for manufacturing IC components using bottom-up fill of openings with a dielectric material. In one aspect, an exemplary method includes, first, depositing a solid dielectric liner on the inner surfaces of the openings using a non-flowable process, and subsequently filling the remaining empty volume of the openings with a fill dielectric using a flowable process. Such a combination method may maximize the individual strengths of the non-flowable and flowable processes due to the synergetic effect achieved by their combined use, while reducing their respective drawbacks. Assemblies and devices manufactured using such methods are disclosed as well.
    Type: Application
    Filed: December 23, 2022
    Publication date: April 27, 2023
    Inventors: Ebony L. MAYS, Bruce J. TUFTS
  • Publication number: 20220262795
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a first isolation structure over a first end of a fin. A gate structure is over the fin and is spaced apart from the first isolation structure along the direction. A second isolation structure is over a second end of the fin, the second end opposite the first end. The second isolation structure is spaced apart from the gate structure. The first isolation structure and the second isolation structure both comprise a first dielectric material laterally surrounding a recessed second dielectric material distinct from the first dielectric material. The recessed second dielectric material laterally surrounds at least a portion of a third dielectric material different from the first and second dielectric materials.
    Type: Application
    Filed: May 3, 2022
    Publication date: August 18, 2022
    Inventors: Byron HO, Chun-Kuo HUANG, Erica THOMPSON, Jeanne LUCE, Michael L. HATTENDORF, Christopher P. AUTH, Ebony L. MAYS
  • Patent number: 11380683
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a first isolation structure over a first end of a fin. A gate structure is over the fin and is spaced apart from the first isolation structure along the direction. A second isolation structure is over a second end of the fin, the second end opposite the first end. The second isolation structure is spaced apart from the gate structure. The first isolation structure and the second isolation structure both comprise a first dielectric material laterally surrounding a recessed second dielectric material distinct from the first dielectric material. The recessed second dielectric material laterally surrounds at least a portion of a third dielectric material different from the first and second dielectric materials.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: July 5, 2022
    Assignee: Intel Corporation
    Inventors: Byron Ho, Chun-Kuo Huang, Erica Thompson, Jeanne Luce, Michael L. Hattendorf, Christopher P. Auth, Ebony L. Mays
  • Patent number: 10964800
    Abstract: Semiconductor devices having fin-end stress-inducing features, and methods of fabricating semiconductor devices having fin-end stress-inducing features, are described. In an example, a semiconductor structure includes a semiconductor fin protruding through a trench isolation region above a substrate. The semiconductor fin has a top surface, a first end, a second end, and a pair of sidewalls between the first end and the second end. A gate electrode is over a region of the top surface and laterally adjacent to a region of the pair of sidewalls of the semiconductor fin. The gate electrode is between the first end and the second end of the semiconductor fin. A first dielectric plug is at the first end of the semiconductor fin. A second dielectric plug is at the second end of the semiconductor fin.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: March 30, 2021
    Assignee: Intel Corporation
    Inventors: Byron Ho, Michael L. Hattendorf, Jeanne L. Luce, Ebony L. Mays, Erica J. Thompson
  • Publication number: 20210035972
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a first isolation structure over a first end of a fin. A gate structure is over the fin and is spaced apart from the first isolation structure along the direction. A second isolation structure is over a second end of the fin, the second end opposite the first end. The second isolation structure is spaced apart from the gate structure. The first isolation structure and the second isolation structure both comprise a first dielectric material laterally surrounding a recessed second dielectric material distinct from the first dielectric material. The recessed second dielectric material laterally surrounds at least a portion of a third dielectric material different from the first and second dielectric materials.
    Type: Application
    Filed: October 21, 2020
    Publication date: February 4, 2021
    Inventors: Byron HO, Chun-Kuo HUANG, Erica THOMPSON, Jeanne LUCE, Michael L. HATTENDORF, Christopher P. AUTH, Ebony L. MAYS
  • Patent number: 10861850
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a first isolation structure over a first end of a fin. A gate structure is over the fin and is spaced apart from the first isolation structure along the direction. A second isolation structure is over a second end of the fin, the second end opposite the first end. The second isolation structure is spaced apart from the gate structure. The first isolation structure and the second isolation structure both comprise a first dielectric material laterally surrounding a recessed second dielectric material distinct from the first dielectric material. The recessed second dielectric material laterally surrounds at least a portion of a third dielectric material different from the first and second dielectric materials.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: December 8, 2020
    Assignee: Intel Corporation
    Inventors: Byron Ho, Chun-Kuo Huang, Erica Thompson, Jeanne Luce, Michael L. Hattendorf, Christopher P. Auth, Ebony L. Mays
  • Publication number: 20200365447
    Abstract: Disclosed herein are methods for manufacturing IC components using bottom-up fill of openings with a dielectric material. In one aspect, an exemplary method includes, first, depositing a solid dielectric liner on the inner surfaces of the openings using a non-flowable process, and subsequently filling the remaining empty volume of the openings with a fill dielectric using a flowable process. Such a combination method may maximize the individual strengths of the non-flowable and flowable processes due to the synergetic effect achieved by their combined use, while reducing their respective drawbacks. Assemblies and devices manufactured using such methods are disclosed as well.
    Type: Application
    Filed: September 28, 2017
    Publication date: November 19, 2020
    Applicant: Intel Corporation
    Inventors: Ebony L. Mays, Bruce J. Tufts
  • Patent number: 10811251
    Abstract: A flowable chemical vapor deposition method including depositing a dielectric film precursor on a substrate in a flowable form; depositing an oligomerization agent on the substrate; forming a dielectric film from the dielectric film precursor; and curing the dielectric film under a pressure greater than atmospheric pressure. A method including depositing a dielectric film precursor as a liquid on a substrate in the presence of an oligomerization agent; treating the deposited dielectric film precursor to inhibit outgassing; and curing the dielectric film precursor to form a dielectric film. A method including delivering a dielectric film precursor as a vapor to a substrate including gap structures between device features; condensing the dielectric film precursor on the substrate to a liquid; flowing the liquid into the gap structures; and curing the dielectric film precursor under a pressure of 15 pounds per square inch gauge or greater.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: October 20, 2020
    Assignee: Intel Corporation
    Inventors: Jeanne L. Luce, Ebony L. Mays, Aravind S. Killampalli, Jay P. Gupta
  • Publication number: 20200321333
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a first isolation structure over a first end of a fin. A gate structure is over the fin and is spaced apart from the first isolation structure along the direction. A second isolation structure is over a second end of the fin, the second end opposite the first end. The second isolation structure is spaced apart from the gate structure. The first isolation structure and the second isolation structure both comprise a first dielectric material laterally surrounding a recessed second dielectric material distinct from the first dielectric material. The recessed second dielectric material laterally surrounds at least a portion of a third dielectric material different from the first and second dielectric materials.
    Type: Application
    Filed: June 19, 2020
    Publication date: October 8, 2020
    Inventors: Byron HO, Chun-Kuo HUANG, Erica THOMPSON, Jeanne LUCE, Michael L. HATTENDORF, Christopher P. AUTH, Ebony L. MAYS
  • Patent number: 10734379
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a first isolation structure over a first end of a fin. A gate structure is over the fin and is spaced apart from the first isolation structure along the direction. A second isolation structure is over a second end of the fin, the second end opposite the first end. The second isolation structure is spaced apart from the gate structure. The first isolation structure and the second isolation structure both comprise a first dielectric material laterally surrounding a recessed second dielectric material distinct from the first dielectric material. The recessed second dielectric material laterally surrounds at least a portion of a third dielectric material different from the first and second dielectric materials.
    Type: Grant
    Filed: December 30, 2017
    Date of Patent: August 4, 2020
    Assignee: Intel Corporation
    Inventors: Byron Ho, Chun-Kuo Huang, Erica Thompson, Jeanne Luce, Michael L. Hattendorf, Christopher P. Auth, Ebony L. Mays
  • Publication number: 20200058761
    Abstract: Semiconductor devices having fin-end stress-inducing features, and methods of fabricating semiconductor devices having fin-end stress-inducing features, are described. In an example, a semiconductor structure includes a semiconductor fin protruding through a trench isolation region above a substrate. The semiconductor fin has a top surface, a first end, a second end, and a pair of sidewalls between the first end and the second end. A gate electrode is over a region of the top surface and laterally adjacent to a region of the pair of sidewalls of the semiconductor fin. The gate electrode is between the first end and the second end of the semiconductor fin. A first dielectric plug is at the first end of the semiconductor fin. A second dielectric plug is at the second end of the semiconductor fin.
    Type: Application
    Filed: December 2, 2016
    Publication date: February 20, 2020
    Inventors: Byron HO, Michael L. HATTENDORF, Jeanne L. LUCE, Ebony L. MAYS, Erica J. THOMPSON
  • Publication number: 20190181003
    Abstract: A flowable chemical vapor deposition method including depositing a dielectric film precursor on a substrate in a flowable form; depositing an oligomerization agent on the substrate; forming a dielectric film from the dielectric film precursor; and curing the dielectric film under a pressure greater than atmospheric pressure. A method including depositing a dielectric film precursor as a liquid on a substrate in the presence of an oligomerization agent; treating the deposited dielectric film precursor to inhibit outgassing; and curing the dielectric film precursor to form a dielectric film. A method including delivering a dielectric film precursor as a vapor to a substrate including gap structures between device features; condensing the dielectric film precursor on the substrate to a liquid; flowing the liquid into the gap structures; and curing the dielectric film precursor under a pressure of 15 pounds per square inch gauge or greater.
    Type: Application
    Filed: September 30, 2016
    Publication date: June 13, 2019
    Inventors: Jeanne L. LUCE, Ebony L. MAYS, Aravind S. KILLAMPALLI, Jay P. GUPTA
  • Publication number: 20190164961
    Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a first isolation structure over a first end of a fin. A gate structure is over the fin and is spaced apart from the first isolation structure along the direction. A second isolation structure is over a second end of the fin, the second end opposite the first end. The second isolation structure is spaced apart from the gate structure. The first isolation structure and the second isolation structure both comprise a first dielectric material laterally surrounding a recessed second dielectric material distinct from the first dielectric material. The recessed second dielectric material laterally surrounds at least a portion of a third dielectric material different from the first and second dielectric materials.
    Type: Application
    Filed: December 30, 2017
    Publication date: May 30, 2019
    Inventors: Byron HO, Chun-Kuo HUANG, Erica THOMPSON, Jeanne LUCE, Michael L. HATTENDORF, Christopher P. AUTH, Ebony L. MAYS
  • Publication number: 20190035673
    Abstract: An embodiment includes a semiconductor apparatus comprising: a trench with an aspect ratio of at least 7:1 (height:width); and a dielectric included in the trench; wherein the dielectric: (a) includes carbon and at least one of silicon nitride and silicon carbide, and (b) does not include an oxide. Other embodiments are described herein.
    Type: Application
    Filed: March 31, 2016
    Publication date: January 31, 2019
    Inventors: Ebony L. Mays, Jeanne L. Luce, Elizabeth Mallon