Patents by Inventor Ed Domit

Ed Domit has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11552319
    Abstract: The present disclosure is directed towards the design of electrochemical cells for use in high pressure or high differential pressure operations. The electrochemical cells of the present disclosure have non-circular external pressure boundaries, i.e., the cells have non-circular profiles. In such cells, the internal fluid pressure during operation is balanced by the axial tensile forces developed in the bipolar plates, which prevent the external pressure boundaries of the cells from flexing or deforming. That is, the bipolar plates are configured to function as tension members during operation of the cells. To function as an effective tension member, the thickness of a particular bipolar plate is determined based on the yield strength of the material selected for fabricating the bipolar plate, the internal fluid pressure in the flow structure adjacent to the bipolar plate, and the thickness of the adjacent flow structure.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: January 10, 2023
    Assignee: Nuvera Fuel Cells, LLC
    Inventors: Scott Blanchet, Benjamin Lunt, Ed Domit, Kevin Beverage, Roger Van Boeyen, Wonseok Yoon
  • Patent number: 10305124
    Abstract: An electrochemical cell is disclosed comprising, a first flow structure, a second flow structure, and a membrane electrode assembly disposed between the first and second flow structures. The electrochemical cell further comprises a pair of bipolar plates, wherein the first flow structure, the second flow structure, and the membrane electrode assembly are positioned between the pair of bipolar plates. The electrochemical cell also includes a spring mechanism, wherein the spring mechanism is disposed between the first flow structure and the bipolar plate adjacent to the first flow structure, and applies a pressure on the first flow structure in a direction substantially toward the membrane electrode assembly.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: May 28, 2019
    Assignee: Nuvera Fuel Cells, LLC
    Inventors: Ed Domit, Scott Blanchet
  • Publication number: 20190036137
    Abstract: The present disclosure is directed towards a method and a system for monitoring the performance of an electrochemical cell stack. Monitoring can be performed remotely by measuring the voltage across the stack, and comparing the measured values to predetermined reference values to determine the condition of the stack. Monitoring of the stack voltage enables detection of performance decay, which in turn enables preemptive repair of the stack prior to catastrophic failure.
    Type: Application
    Filed: October 1, 2018
    Publication date: January 31, 2019
    Inventors: Scott BLANCHET, Ed DOMIT
  • Patent number: 10141585
    Abstract: A bipolar plate assembly is provided. The bipolar plate assembly may have a first seal assembly including a first high pressure seal, a second high pressure seal, and an insert plate disposed between the first high pressure seal and the second high pressure seal. The insert plate may have a plurality of ridges formed on an upper surface and a lower surface of the insert plate configured to penetrate into the first high pressure seal and the second high pressure seal when the first high pressure seal and the second high pressure seal are pressed onto the insert plate, thereby forming the seal assembly. The bipolar plate assembly may also have a frame and a base configured to be joined to form a bipolar plate and define a high pressure zone. The seal assembly when installed in the bipolar plate may be configured to seal the high pressure zone.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: November 27, 2018
    Assignee: Nuvera Fuels Cells, LLC
    Inventors: Kevin Beverage, Ed Domit, Roger Van Boeyen
  • Patent number: 10115988
    Abstract: The present disclosure is directed towards a method and a system for monitoring the performance of an electrochemical cell stack. Monitoring can be performed remotely by measuring the voltage across the stack, and comparing the measured values to predetermined reference values to determine the condition of the stack. Monitoring of the stack voltage enables detection of performance decay, which in turn enables preemptive repair of the stack prior to catastrophic failure.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: October 30, 2018
    Assignee: Nuvera Fuel Cells, LLC
    Inventors: Scott Blanchet, Ed Domit
  • Patent number: 10000856
    Abstract: An electrochemical cell includes a pair of bipolar plates and a membrane electrode assembly between the bipolar plates. The electrochemical cell further includes a first seal defining a high pressure zone, wherein the first seal is located between the bipolar plates and configured to contain a first fluid within the high pressure zone. Further, the electrochemical cell includes a second seal defining an intermediate pressure zone, wherein the second seal is located between the bipolar plates and configured to contain a second fluid within the intermediate pressure zone. The first seal is configured to leak the first fluid into the intermediate pressure zone when the first seal unseats.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: June 19, 2018
    Assignee: Nuvera Fuel Cells, LLC
    Inventors: Ed Domit, Scott Blanchet, Roger Van Boeyen, Kevin Beverage
  • Publication number: 20170133693
    Abstract: An electrochemical cell is disclosed comprising, a first flow structure, a second flow structure, and a membrane electrode assembly disposed between the first and second flow structures. The electrochemical cell further comprises a pair of bipolar plates, wherein the first flow structure, the second flow structure, and the membrane electrode assembly are positioned between the pair of bipolar plates. The electrochemical cell also includes a spring mechanism, wherein the spring mechanism is disposed between the first flow structure and the bipolar plate adjacent to the first flow structure, and applies a pressure on the first flow structure in a direction substantially toward the membrane electrode assembly.
    Type: Application
    Filed: January 20, 2017
    Publication date: May 11, 2017
    Applicant: Nuvera Fuel Cells, LLC
    Inventors: Ed Domit, Scott Blanchet
  • Publication number: 20170107633
    Abstract: An electrochemical cell includes a pair of bipolar plates and a membrane electrode assembly between the bipolar plates. The electrochemical cell further includes a first seal defining a high pressure zone, wherein the first seal is located between the bipolar plates and configured to contain a first fluid within the high pressure zone. Further, the electrochemical cell includes a second seal defining an intermediate pressure zone, wherein the second seal is located between the bipolar plates and configured to contain a second fluid within the intermediate pressure zone. The first seal is configured to leak the first fluid into the intermediate pressure zone when the first seal unseats.
    Type: Application
    Filed: December 28, 2016
    Publication date: April 20, 2017
    Applicant: Nuvera Fuel Cells, LLC
    Inventors: Ed Domit, Scott Blanchet, Roger Van Boeyen, Kevin Beverage
  • Patent number: 9590257
    Abstract: An electrochemical cell is disclosed comprising, a first flow structure, a second flow structure, and a membrane electrode assembly disposed between the first and second flow structures. The electrochemical cell further comprises a pair of bipolar plates, wherein the first flow structure, the second flow structure, and the membrane electrode assembly are positioned between the pair of bipolar plates. The electrochemical cell also includes a spring mechanism, wherein the spring mechanism is disposed between the first flow structure and the bipolar plate adjacent to the first flow structure, and applies a pressure on the first flow structure in a direction substantially toward the membrane electrode assembly.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: March 7, 2017
    Assignee: Nuvera Fuel Cells, LLC
    Inventors: Ed Domit, Scott Blanchet
  • Publication number: 20170047596
    Abstract: A bipolar plate assembly is provided. The bipolar plate assembly may have a first seal assembly including a first high pressure seal, a second high pressure seal, and an insert plate disposed between the first high pressure seal and the second high pressure seal. The insert plate may have a plurality of ridges formed on an upper surface and a lower surface of the insert plate configured to penetrate into the first high pressure seal and the second high pressure seal when the first high pressure seal and the second high pressure seal are pressed onto the insert plate, thereby forming the seal assembly. The bipolar plate assembly may also have a frame and a base configured to be joined to form a bipolar plate and define a high pressure zone. The seal assembly when installed in the bipolar plate may be configured to seal the high pressure zone.
    Type: Application
    Filed: August 10, 2016
    Publication date: February 16, 2017
    Applicant: Nuvera Fuel Cells, LLC
    Inventors: Kevin Beverage, Ed Domit, Roger Van Boeyen
  • Patent number: 9567679
    Abstract: An electrochemical cell includes a pair of bipolar plates and a membrane electrode assembly between the bipolar plates. The electrochemical cell further includes a first seal defining a high pressure zone, wherein the first seal is located between the bipolar plates and configured to contain a first fluid within the high pressure zone. Further, the electrochemical cell includes a second seal defining an intermediate pressure zone, wherein the second seal is located between the bipolar plates and configured to contain a second fluid within the intermediate pressure zone. The first seal is configured to leak the first fluid into the intermediate pressure zone when the first seal unseats.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: February 14, 2017
    Assignee: Nuvera Fuel Cells, LLC
    Inventors: Ed Domit, Scott Blanchet, Roger Van Boeyen, Kevin Beverage
  • Publication number: 20140363751
    Abstract: The present disclosure is directed towards a method and a system for monitoring the performance of an electrochemical cell stack. Monitoring can be performed remotely by measuring the voltage across the stack, and comparing the measured values to predetermined reference values to determine the condition of the stack. Monitoring of the stack voltage enables detection of performance decay, which in turn enables preemptive repair of the stack prior to catastrophic failure.
    Type: Application
    Filed: June 5, 2014
    Publication date: December 11, 2014
    Inventors: Scott BLANCHET, Ed DOMIT
  • Publication number: 20140238845
    Abstract: An electrochemical cell includes a pair of bipolar plates and a membrane electrode assembly between the bipolar plates. The electrochemical cell further includes a first seal defining a high pressure zone, wherein the first seal is located between the bipolar plates and configured to contain a first fluid within the high pressure zone. Further, the electrochemical cell includes a second seal defining an intermediate pressure zone, wherein the second seal is located between the bipolar plates and configured to contain a second fluid within the intermediate pressure zone. The first seal is configured to leak the first fluid into the intermediate pressure zone when the first seal unseats.
    Type: Application
    Filed: February 27, 2014
    Publication date: August 28, 2014
    Applicant: NUVERA FUEL CELLS, INC.
    Inventors: Ed DOMIT, Scott BLANCHET, Roger VAN BOEYEN, Kevin BEVERAGE
  • Publication number: 20140099566
    Abstract: An electrochemical cell is disclosed comprising, a first flow structure, a second flow structure, and a membrane electrode assembly disposed between the first and second flow structures. The electrochemical cell further comprises a pair of bipolar plates, wherein the first flow structure, the second flow structure, and the membrane electrode assembly are positioned between the pair of bipolar plates. The electrochemical cell also includes a spring mechanism, wherein the spring mechanism is disposed between the first flow structure and the bipolar plate adjacent to the first flow structure, and applies a pressure on the first flow structure in a direction substantially toward the membrane electrode assembly.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 10, 2014
    Applicant: Nuvera Fuel Cells, Inc.
    Inventors: Ed Domit, Scott Blanchet
  • Publication number: 20140051007
    Abstract: The present disclosure is directed towards the design of electrochemical cells for use in high pressure or high differential pressure operations. The electrochemical cells of the present disclosure have non-circular external pressure boundaries, i.e., the cells have non-circular profiles. In such cells, the internal fluid pressure during operation is balanced by the axial tensile forces developed in the bipolar plates, which prevent the external pressure boundaries of the cells from flexing or deforming. That is, the bipolar plates are configured to function as tension members during operation of the cells. To function as an effective tension member, the thickness of a particular bipolar plate is determined based on the yield strength of the material selected for fabricating the bipolar plate, the internal fluid pressure in the flow structure adjacent to the bipolar plate, and the thickness of the adjacent flow structure.
    Type: Application
    Filed: August 16, 2013
    Publication date: February 20, 2014
    Applicant: Nuvera Fuel Cells, Inc.
    Inventors: Scott Blanchet, Benjamin Lunt, Ed Domit, Kevin Beverage, Roger Van Boeyen, Wonseok Yoon