Patents by Inventor Ed Gardner

Ed Gardner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210346721
    Abstract: A system that generates a three-dimensional model of a tissue surface, for example the inner surface of the heart from two-dimensional image data slices. On this surface, one or more pattern lines are drawn, e.g., by a physician using a user interface, to designate desired lesion(s) on the surface. From the pattern lines, a three-dimensional volume for a lesion can be determined using known constraints. Advantageously, the series of boundaries generated by the three-dimensional volume may be projected back onto the individual CT scans, which then may be transferred to a standard radiosurgical planning tool. A dose cloud may also be projected on the model to aid in evaluating a plan.
    Type: Application
    Filed: July 21, 2021
    Publication date: November 11, 2021
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Patent number: 11097127
    Abstract: A system that generates a three-dimensional model of a tissue surface, for example the inner surface of the heart from two-dimensional image data slices. On this surface, one or more pattern lines are drawn, e.g., by a physician using a user interface, to designate desired lesion(s) on the surface. From the pattern lines, a three-dimensional volume for a lesion can be determined using known constraints. Advantageously, the series of boundaries generated by the three-dimensional volume may be projected back onto the individual CT scans, which then may be transferred to a standard radiosurgical planning tool. A dose cloud may also be projected on the model to aid in evaluating a plan.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: August 24, 2021
    Assignee: Varian Medical Systems, Inc.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Patent number: 11033251
    Abstract: A computing system includes a memory configured to store instructions, and one or more processors configured to execute the instructions to receive data relating to an image or a user, determine a feature from the data, identify a user preference from a user profile, obtain a model, and segment the image based on the feature, the user preference, and the model. The model is generated by determining a historical feature from historical data as an input, determining a desired output, obtaining a preliminary model based on the input and the desired output, determining an actual output of the preliminary model, determining error criteria between the actual output and the desired output, and generating the model by updating the preliminary model based on the error criteria.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: June 15, 2021
    Assignee: EDAN INSTRUMENTS, INC.
    Inventors: Seshadri Srinivasan, Jianhua Mo, Ed Gardner, Feng Ling, Sean Murphy
  • Patent number: 10974075
    Abstract: Method and systems are disclosed for radiating a moving target inside a heart. The method includes acquiring sequential volumetric representations of an area of the heart and defining a target tissue region and/or a radiation sensitive structure region in 3D for a first of the representations. The target tissue region and/or radiation sensitive structure region are identified for another of the representations by an analysis of the area of the heart from the first representation and the other representation. Radiation beams to the target tissue region are fired in response to the identified target tissue region and/or radiation sensitive structure region from the other representation.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: April 13, 2021
    Assignee: Varian Medical Systems, Inc.
    Inventors: Thilaka Sumanaweera, Patrick Maguire, Ed Gardner
  • Publication number: 20190351254
    Abstract: A system that generates a three-dimensional model of a tissue surface, for example the inner surface of the heart from two-dimensional image data slices. On this surface, one or more pattern lines are drawn, e.g., by a physician using a user interface, to designate desired lesion(s) on the surface. From the pattern lines, a three-dimensional volume for a lesion can be determined using known constraints. Advantageously, the series of boundaries generated by the three-dimensional volume may be projected back onto the individual CT scans, which then may be transferred to a standard radiosurgical planning tool. A dose cloud may also be projected on the model to aid in evaluating a plan.
    Type: Application
    Filed: November 19, 2018
    Publication date: November 21, 2019
    Applicant: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Publication number: 20190261956
    Abstract: A computing system includes a memory configured to store instructions, and one or more processors configured to execute the instructions to receive data relating to an image or a user, determine a feature from the data, identify a user preference from a user profile, obtain a model, and segment the image based on the feature, the user preference, and the model. The model is generated by determining a historical feature from historical data as an input, determining a desired output, obtaining a preliminary model based on the input and the desired output, determining an actual output of the preliminary model, determining error criteria between the actual output and the desired output, and generating the model by updating the preliminary model based on the error criteria.
    Type: Application
    Filed: May 9, 2019
    Publication date: August 29, 2019
    Applicant: EDAN INSTRUMENTS, INC.
    Inventors: Seshadri SRINIVASAN, Jianhua MO, Ed GARDNER, Feng LING, Sean MURPHY
  • Publication number: 20170189721
    Abstract: Method and systems are disclosed for radiating a moving target inside a heart. The method includes acquiring sequential volumetric representations of an area of the heart and defining a target tissue region and/or a radiation sensitive structure region in 3D for a first of the representations. The target tissue region and/or radiation sensitive structure region are identified for another of the representations by an analysis of the area of the heart from the first representation and the other representation. Radiation beams to the target tissue region are fired in response to the identified target tissue region and/or radiation sensitive structure region from the other representation.
    Type: Application
    Filed: February 17, 2015
    Publication date: July 6, 2017
    Inventors: Thilaka Sumanaweera, Patrick Maguire, Ed Gardner
  • Publication number: 20170065831
    Abstract: A system that generates a three-dimensional model of a tissue surface, for example the inner surface of the heart from two-dimensional image data slices. On this surface, one or more pattern lines are drawn, e.g., by a physician using a user interface, to designate desired lesion(s) on the surface. From the pattern lines, a three-dimensional volume for a lesion can be determined using known constraints. Advantageously, the series of boundaries generated by the three-dimensional volume may be projected back onto the individual CT scans, which then may be transferred to a standard radiosurgical planning tool. A dose cloud may also be projected on the model to aid in evaluating a plan.
    Type: Application
    Filed: November 21, 2016
    Publication date: March 9, 2017
    Applicant: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Patent number: 9504853
    Abstract: A system that generates a three-dimensional model of a tissue surface, for example the inner surface of the heart from two-dimensional image data slices. On this surface, one or more pattern lines are drawn, e.g., by a physician using a user interface, to designate desired lesion(s) on the surface. From the pattern lines, a three-dimensional volume for a lesion can be determined using known constraints. Advantageously, the series of boundaries generated by the three-dimensional volume may be projected back onto the individual CT scans, which then may be transferred to a standard radiosurgical planning tool. A dose cloud may also be projected on the model to aid in evaluating a plan.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: November 29, 2016
    Assignee: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Patent number: 9320916
    Abstract: Radiosurgical treatments of tissues of the heart mitigate arrhythmias and treat other tumerous and non-tumerous disease using an implanted fiducial positioned in or near the heart using cardiac catheterization techniques. The fiducials may be implanted after diagnostic and planning images of the target tissues have been acquired. Fiducial implantation may take place the day of a scheduled radiosurgical treatment. Techniques to accommodate post-planning fiducial implantation may include registration of the implanted fiducial location with the treatment plan, and active fiducials may limit collateral imaging radiation exposure while enhancing tracking accuracy.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: April 26, 2016
    Assignee: CYBERHEART, INC.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Publication number: 20160051843
    Abstract: A system that generates a three-dimensional model of a tissue surface, for example the inner surface of the heart from two-dimensional image data slices. On this surface, one or more pattern lines are drawn, e.g., by a physician using a user interface, to designate desired lesion(s) on the surface. From the pattern lines, a three-dimensional volume for a lesion can be determined using known constraints. Advantageously, the series of boundaries generated by the three-dimensional volume may be projected back onto the individual CT scans, which then may be transferred to a standard radiosurgical planning tool. A dose cloud may also be projected on the model to aid in evaluating a plan.
    Type: Application
    Filed: November 2, 2015
    Publication date: February 25, 2016
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Patent number: 9205279
    Abstract: A system that generates a three-dimensional model of a tissue surface, for example the inner surface of the heart from two-dimensional image data slices. On this surface, one or more pattern lines are drawn, e.g., by a physician using a user interface, to designate desired lesion(s) on the surface. From the pattern lines, a three-dimensional volume for a lesion can be determined using known constraints. Advantageously, the series of boundaries generated by the three-dimensional volume may be projected back onto the individual CT scans, which then may be transferred to a standard radiosurgical planning tool. A dose cloud may also be projected on the model to aid in evaluating a plan.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: December 8, 2015
    Assignee: CYBERHEART, INC.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Patent number: 8784290
    Abstract: Radiosurgical treatments of tissues of the heart mitigate arrhythmias and treat other tumerous and non-tumerous disease using an implanted fiducial positioned in or near the heart using cardiac catheterization techniques. The fiducials may be implanted after diagnostic and planning images of the target tissues have been acquired. Fiducial implantation may take place the day of a scheduled radiosurgical treatment. Techniques to accommodate post-planning fiducial implantation may include registration of the implanted fiducial location with the treatment plan, and active fiducials may limit collateral imaging radiation exposure while enhancing tracking accuracy.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: July 22, 2014
    Assignee: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Publication number: 20130131425
    Abstract: Radiosurgical treatments of tissues of the heart mitigate arrhythmias and treat other tumerous and non-tumerous disease using an implanted fiducial positioned in or near the heart using cardiac catheterization techniques. The fiducials may be implanted after diagnostic and planning images of the target tissues have been acquired. Fiducial implantation may take place the day of a scheduled radiosurgical treatment. Techniques to accommodate post-planning fiducial implantation may include registration of the implanted fiducial location with the treatment plan, and active fiducials may limit collateral imaging radiation exposure while enhancing tracking accuracy.
    Type: Application
    Filed: September 14, 2012
    Publication date: May 23, 2013
    Applicant: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Publication number: 20130102896
    Abstract: Method and systems are disclosed for radiating a moving target inside a heart. The method includes acquiring sequential volumetric representations of an area of the heart and defining a target tissue region and/or a radiation sensitive structure region in 3D for a first of the representations. The target tissue region and/or radiation sensitive structure region are identified for another of the representations by an analysis of the area of the heart from the first representation and the other representation. Radiation beams to the target tissue region are fired in response to the identified target tissue region and/or radiation sensitive structure region from the other representation.
    Type: Application
    Filed: September 14, 2012
    Publication date: April 25, 2013
    Applicant: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Patrick Maguire, Ed Gardner
  • Patent number: 8345821
    Abstract: Method and systems are disclosed for radiating a moving target inside a heart. The method includes acquiring sequential volumetric representations of an area of the heart and defining a target tissue region and/or a radiation sensitive structure region in 3D for a first of the representations. The target tissue region and/or radiation sensitive structure region are identified for another of the representations by an analysis of the area of the heart from the first representation and the other representation. Radiation beams to the target tissue region are fired in response to the identified target tissue region and/or radiation sensitive structure region from the other representation.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: January 1, 2013
    Assignee: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Patrick Maguire, Ed Gardner
  • Publication number: 20110166408
    Abstract: A system that generates a three-dimensional model of a tissue surface, for example the inner surface of the heart from two-dimensional image data slices. On this surface, one or more pattern lines are drawn, e.g., by a physician using a user interface, to designate desired lesion(s) on the surface. From the pattern lines, a three-dimensional volume for a lesion can be determined using known constraints. Advantageously, the series of boundaries generated by the three-dimensional volume may be projected back onto the individual CT scans, which then may be transferred to a standard radiosurgical planning tool. A dose cloud may also be projected on the model to aid in evaluating a plan.
    Type: Application
    Filed: July 16, 2010
    Publication date: July 7, 2011
    Applicant: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Publication number: 20110166407
    Abstract: Radiosurgical treatments of tissues of the heart mitigate arrhythmias and treat other tumerous and non-tumerous disease using an implanted fiducial positioned in or near the heart using cardiac catheterization techniques. The fiducials may be implanted after diagnostic and planning images of the target tissues have been acquired. Fiducial implantation may take place the day of a scheduled radiosurgical treatment. Techniques to accommodate post-planning fiducial implantation may include registration of the implanted fiducial location with the treatment plan, and active fiducials may limit collateral imaging radiation exposure while enhancing tracking accuracy.
    Type: Application
    Filed: July 16, 2010
    Publication date: July 7, 2011
    Applicant: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Ed Gardner, Oliver Blanck, Tao Cai, Darrin Uecker, Patrick Maguire
  • Publication number: 20110137158
    Abstract: Method and systems are disclosed for radiating a moving target inside a heart. The method includes acquiring sequential volumetric representations of an area of the heart and defining a target tissue region and/or a radiation sensitive structure region in 3D for a first of the representations. The target tissue region and/or radiation sensitive structure region are identified for another of the representations by an analysis of the area of the heart from the first representation and the other representation. Radiation beams to the target tissue region are fired in response to the identified target tissue region and/or radiation sensitive structure region from the other representation.
    Type: Application
    Filed: October 8, 2010
    Publication date: June 9, 2011
    Applicant: CyberHeart, Inc.
    Inventors: Thilaka Sumanaweera, Patrick Maguire, Ed Gardner
  • Patent number: 7953204
    Abstract: Method and systems are disclosed for radiating a moving target inside a heart. The method includes acquiring sequential volumetric representations of an area of the heart and defining a target tissue region and/or a radiation sensitive structure region in 3D for a first of the representations. The target tissue region and/or radiation sensitive structure region are identified for another of the representations by an analysis of the area of the heart from the first representation and the other representation. Radiation beams to the target tissue region are fired in response to the identified target tissue region and/or radiation sensitive structure region from the other representation.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: May 31, 2011
    Assignees: Cyberheart, Inc., Accuray Incorporated
    Inventors: Thilaka Sumanaweera, Patrick Maguire, Ed Gardner, Jay West